85605

Процесс обработки результатов измерений с многократными наблюдениями

Курсовая

Другое

Измерение - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.

Русский

2015-03-28

193.91 KB

2 чел.

Введение

Измерения не являются самоцелью, а имеют определенную область использования, т. е. проводится для достижения некоторого конечного результата в соответствии с поставленной задачей.

Основным объектом измерения является физические величины.

Физическая величина – это одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Измерение - совокупность  операций  по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.

Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно.

Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.

Совокупные измерения — проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях

Совместные измерения — проводимые одновременно измерения двух или нескольких неодноимённых величин для определения зависимости между ними.

Равноточные измерения — ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения — ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

Однократное измерение — измерение, выполненное один раз.

Многократное измерение — измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений

Метод измерений - прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.   

Погрешность - Отклонение результата измерения от истинного  (действительного) значения измеряемой величины.

Цель курсовой работы – закрепление знаний по основным разделам курса теоретической метрологии, а также практическое обучение методам анализа и обработки статистических данных.

Курсовая работа позволяет получить навыки выявления погрешностей в результатах наблюдений, статистической обработки результатов наблюдений отдельных групп, определения средневзвешенных статистических характеристик  групп неравноточных наблюдений; представления результатов измерений; оценки формы и вида законов экспериментальных распределений физических величин; записи результатов измерений. Выполнение курсового проекта также позволяет овладеть практическими навыками в работе с нормативно-технической литературой и стандартами.

1 Обработка результатов наблюдений

1.1 Построение таблицы, содержащей экспериментальные данные

Получен ряд наблюдений случайной величины, который представлен в таблице.Даны результаты 51 измерения. Исходные данные  указаны в таблице 1.

Таблица 1 - Упорядоченная совокупность результатов, мин (n1= n2= 51)

Порядковый номер результата измерений

Первичный неупорядоченный

ряд для Х1

Упорядоченный ряд для Х1

1

23

17

2

20

20

3

27

20

4

30

21

5

32

21

6

29

22

7

33

22

8

31

23

9

35

23

10

39

23

11

36

24

12

33

25

13

33

25

14

30

25

15

31

25

16

28

25

17

25

26

18

23

26

19

25

27

20

28

27

21

26

27

22

24

28

23

29

28

24

31

29

25

35

29

26

35

29

27

38

29

28

40

29

29

39

30

30

34

30

31

30

30

32

31

31

33

29

31

34

27

31

35

23

31

36

25

31

37

26

32

38

25

33

39

21

33

40

22

33

41

25

34

42

27

34

43

29

35

44

31

35

45

34

35

46

37

36

47

29

37

48

21

38

49

20

39

50

17

39

51

22

40

2.Вычислим статистические оценки распределения случайной величины: математическое ожидание mx, дисперсию Dx, СКО Sx, величины X:

2.1 Определяем математическое ожидание mx, по формуле () [1]:

2.2 Находим значение дисперсии Dx по формуле:

2.3 Находим значение СКО Sx, величины X:

3.1Произведем проверку критерия согласия с (нормальным) законом распределения по методу трех сигм.

Критерий трех сигм применяется для случая, когда измеряемая величина x распределена по нормальному закону. По этому критерию считается, что с вероятностью p=0.9973 и значимостью q=0,0027 появление даже одной случайной погрешности, большей, чем , маловероятное событие. Данный критерий надежен при числе измерений и широко применяется.

Mатематическое ожидание mx:

 Значение СКО, величины X:

Вычисляем разность среднеарифметического значения и сомнительного значения измеряемой величины и сравнивают. За сомнительные значения принимаются наибольшее и наименьшее значение результата измерений.

Если

то сомнительное значение оставляют как равноправное в ряду наблюдений.

Если

то сомнительное значение отбрасывают как промах.

|17 – 28,882| 16,59 – условие выполняется, грубая погрешность отсутствует;

|40 – 28,882| 16,59 – условие выполняется, грубая погрешность отсутствует.

3.2 Построим статистический ряд, т.е таблицу, в которой приведены длины разрядов Jiв порядке их соответствия оси абсцисс измеряемой величины Х, количество ni значений величины Xi, оказавшихся в том или ином разряде, а также статистические частоты Pi* и вероятности Piпопадания измеряемой величины X в интервал (xi;xi+1):

Таблица 2 – Статистический ряд

Ji

17-20

20-23

23-26

26-30

30-33

33-36

36-40

ni

1

7

3

11

9

8

6

Pi*

0,02

0,137

0,176

0,216

0,176

0,157

0,118

Pi

-2,149

-1,606

-1,064

-0,521

0,202

0,745

2.01

Вычисляем число разрядов kпо формуле Стерджесса:

Находим, что число разрядов k=7.

4Построим гистограмму, как графическое изображение статистической плотности распределения.

Вид гистограммы позволяет выбрать в качестве теоретической модели нормальной закон распределения, который принимаем за рабочую гипотезу с целью идентификации.

Построим полигон, как графическое изображение статистической плотности распределения.

5Определяем значение границ интегрирования и вычисляем значения функции Лапласа Ф для значений по существующим таблицам [1] (Приложение 1).

Вычисление теоретических вероятностей  Piпроизводим по формуле:



Результаты заносим в таблицу 2 (4-я строка).

6Вычисляем критерий согласия (Пирсона):

7 Находим число степеней свободы распределения с учетом того, что достаточное число независимых условий s для нормального закона равно трем:

8 Из таблицы приложения 2 распределения (для значений =0,6692, и r=4) находим вероятность согласия эмпирического и теоретического законов распределения,интерполируя между соседними величинами.
На основании полученной вероятности
можно сделать вывод, что гипотеза о соответствии эмпирического закона нормальному не противоречит экспериментальным данным.

9 Вычислим дисперсию и СКО результата измерений:

10 Определим значения квантилей закона распределения   при доверительной вероятности  . Для нашего случая

По таблице приложения 3 [1] находим:

11Произведем интервальную оценку результата наблюдения Вычислим доверительные границы и запишем результат наблюдения в виде

Это означает, что 98% всех наблюдаемых значений распределяются в пределах от 18.052 до 39.712.

12Произведем интервальную оценку результата измерений, предварительно вычислив доверительные границы. Результат измерения представим в виде:

Таким образом, с достоверностью 98% можно утверждать, что математическое ожидание среднего арифметического результата наблюдений находится в пределах от 27,373 до 30.393.

При номинальном значении детали L=40мм, результат наблюдений находятся в пределах от 40,027 до 40, 03 мм.

Заключение

Курсовая работа представляет собой  комплексную работу по обработке результатов равноточных и неравноточных многократных наблюдений.

В данной курсовой работе изложен процесс обработки результатов измерений с многократными наблюдениями.

Проведена проверка нормальности распределения результатов наблюдений согласно вычислению по критерию Пирсона (критерию трех сигм).

Вопрос исключения грубых погрешностей или промахов по данному критерию  решается статистическими методами, которых не применимы к однократным измерениям. Основная гипотеза заключается в том, что результаты измерения не содержат грубых погрешностей, то есть является измеряемой величиной.

Список использованных источников

1Каратаев Р.Н., Гогин В.А. Метрология. Учебное пособие. Казань. Издательство Казан. Гос. Техн. ун-та, 2004, 156с.

2  ГОСТ Р.8.736-2011 « Измерения прямые многократные. Методы результатов измерений. Основныеположени» Издательство: Москва. Стандартинформ. 2013. 3-18 с.

3  РМГ 29-99 «Термины и определения». 3-25 с.

ПРИЛОЖЕНИЕ А


 

А также другие работы, которые могут Вас заинтересовать

13083. Классный час «9 декабря – День Героев Отечества» 96.5 KB
  Классный час на тему: 9 декабря День Героев Отечества. Цель: Расширение знаний учеников о героических страницах истории нашего Отечества. Воспитание патриотизма гражданственности чувства гордости и уважения к историческому прошлому Родины. Аудитория: учащие...
13084. Классный час «Судьба семьи в судьбе страны» 24.5 KB
  Классный час посвященный Дню защитника Отечества 23 февраля. Судьба семьи в судьбе страны Цели классного часа. воспитание чувства патриотизма любви к Родине. формировать преемственность поколений;3. способствовать развитию нравственных качеств: честность правдивос...
13085. Классный час «Александр Невский — великая личность России» 54.5 KB
  Классный час Александр Невский великая личность России Цель: формирование у учащихся чувства патриотизма гражданственности уважения к историческому прошлому на примере исторической личности Александра Невского. Оборудование: мультимедийная презентация прило
13086. Классный час «Москва и москвичи» 22.87 KB
  Конспект классного часа. Тема классного часа: Москва и москвичи Задачи: 1.Образовательная: Познакомить учащихся с историей московских достопримечательностей 2.Воспитательная: : Воспитывать любовь к Родному городу чувство патриотизма. 3.Развивающая: Развивать р...
13087. Классный час «Береги своё время и время других людей» 54.5 KB
  Береги своё время и время других людей Цель: учить ценить своё время и время окружающих людей. Задачи: показать важность соблюдения режима дня; воспитывать ответственность ...
13088. Классный час «Час знакомства» 24.47 KB
  Тема: Час знакомства Цель: познакомиться с учениками школы №90 3 Б класса узнать интересы детей взаимоотношения в коллективе способствовать развитию отношений между детьми и практикантами. создать условия которые способствуют быстрому и благоприятному зна...
13089. Виховна година. Чорнобильська катастрофа, її причини та наслідки 64.5 KB
  Виховна година: Чорнобильська катастрофа її причини та наслідки Мета. Розширити знання дітей про Чорнобильську трагедію наголосити про потенційну небезпеку радіації для усього живого розповісти про ліквідаторів аварії на Чорнобильській АЕС показати що чужої б
13090. Правила школьной жизни. Классный час для первокласников 34 KB
  Классный час для первоклассников Правила школьной жизни Проходя сложный путь социализации ребенок подвергается частым воздействиям окружающей действительности которая выступает как стрессор длительного действия истощающий запас адаптационной энергии. Пробл...
13091. Классный час «Что такое толерантность» 39 KB
  Классный час Что такое толерантность /15 классы/ Классный час проводится волонтёрами-старшеклассниками. Цель: Знакомство и работа с понятием толерантная личность. Здравствуйте дети Меня зовут. Сегодня я пришла пришёл к вам чтобы рассказать вам о дружбе