85898

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ОДНИМ НЕИЗВЕСТНЫМ

Лабораторная работа

Математика и математический анализ

Всякое значение при котором называется корнем уравнения . для каждого корня уравнения существует окрестность не содержащая других корней этого уравнения. Приближенное нахождение изолированных действительных корней уравнения обычно складывается из двух этапов: отделение корней т. установление малых промежутков в которых содержится один и только один корень уравнения .

Русский

2015-03-31

255 KB

4 чел.

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ОДНИМ НЕИЗВЕСТНЫМ

Пусть дано уравнение , где функция  определена и непрерывна в некотором конечном или бесконечном интервале .

Всякое значение , при котором , называется корнем уравнения .

Будем предполагать, что уравнение     имеет лишь изолированные корни, т. е. для каждого корня уравнения  существует окрестность, не содержащая других корней этого уравнения.

Приближенное нахождение изолированных действительных корней уравнения  обычно складывается из двух этапов:

  1.  отделение корней, т. е. установление малых промежутков , в которых содержится один и только один корень уравнения .
  2.  вычисление каждого отделенного корня с заданной точностью .

Для отделения корней будет полезно следующее утверждение: если - непрерывная, строго монотонная функция и , то на отрезке существует корень уравнения .

Укажем следующие три способа отделения корня для случая :

1) Составляется таблица значений функции  на промежутке изменения аргумента , и если окажется, что для соседних значений аргументов значения функции имеют разные знаки, то корень уравнения  находится между ними.

2) Строится график функции  на промежутке изменения аргумента; тогда искомые корни находятся в некоторых окрестностях точек пересечения графика с осью .

3) Уравнение  заменяется равносильным: . Строятся графики функций  и ; тогда искомые корни находятся в некоторых окрестностях проекций на ось  точек пересечения этих графиков.

Рассмотрим наиболее распространенные методы вычисления корней.

Метод бисекции (метод половинного деления)

Пусть мы отделили корень на отрезке . Разделим отрезок  пополам точкой . Если , то возможны два случая: либо  меняет знак на отрезке , либо на отрезке . Выбираем в каждом случае тот из отрезков, на котором функция меняет знак, и продолжаем процесс деления до тех пор, пока , где - точность.

Метод касательных (метод Ньютона)

Пусть мы отделили корень на отрезке . Производные  и сохраняют знак на всем интервале . Проведем касательную в точке . Для того, чтобы точка пересечения касательной с осью OX лежала внутри отрезка , касательную надо проводить в точке , где знаки  и второй производной  одинаковы. Иными словами, должно выполняться условие: для x=. Новое значение приближенного корня вычисляем по формуле:

, .

Процесс продолжаем до тех пор, пока, где - точность.

Метод хорд

Пусть мы отделили корень на отрезке . В данном методе процесс итераций состоит в том, что в качестве приближений к корню уравнения принимаются значения  точек пересечения хорды с осью абсцисс.

Метод хорд является методом исключения интервалов. Пусть f(a)=A и f(b)=B. Построим хорду AB, точкой пересечения с осью абсцисс она поделит отрезок на две части. Выбираем ту часть, на границах которой функция имеет разный знак, и снова строим хорду, находим точку её пересечения с осью абсцисс и получаем новое приближение корня. Каждое новое значение приближения корня находится по формуле:

Процесс продолжаем до тех пор, пока, где - точность.

Лабораторная работа №2

Задания: Найти корень данного уравнения  (см. таблицу) с точностью до :

  1.  методом бисекции;
  2.  методом касательных;
  3.  методом хорд.

Порядок выполнения работы:

  1.  Отделить корень уравнения.
  2.  Вычислить корень заданного уравнения методом бисекции. Для этого вычислить итерации до тех пор, пока , где - точность.
  3.  Вычислить корень заданного уравнения  методом касательных.
  4.  Сравнить результаты вычислений по методам бисекции и Ньютона по количеству итераций.
  5.  Вычислить корень заданного уравнения  методом хорд.

Данные к заданию:

варианта

Уравнение

варианта

Уравнение

1

7

2

8

3

9

4

10

5

11

6

12


Y

X

a

b

Y

X

a

b=x0

x1

Y

X

a

b

x0

A

B


 

А также другие работы, которые могут Вас заинтересовать

53363. Моя улюблена іграшка 196.5 KB
  The topic under discussion today is “Our toys. In the Toy Shop”. We’ll learn new vocabulary and practice it in speech; we’ll sing songs together, role-play situations, do some exercises.
53364. Рольові ігри на уроках англійської мови 257.5 KB
  Сучасна методика викладає такі ідеї та принципи в навчанні: визнання першорядності процесу пізнання та доступності інформації; цінність співпраці; зокрема використання діалогів полілогів імпровізацій та рольових ігор як основних форм роботи; визнання рівності пізнавальних та творчих можливостей усіх учнів а також свідомої участі учнів у процесі навчання; активна позиція учня в процесі навчання; принцип комунікативності який передбачає побудову процесу навчання як моделі процесу реальної комунікації; урахування...
53365. Ігри на матеріалі економічної термінології, спрямовані на збагачення активного словника та вдосконалення культури мовлення учнів 179 KB
  Методична порада. Для проведення ігор діти класу ділиться на гомогенні або гетерогенні групи. Обирається в кожній групі лідер. Завдання ігрової вправи виконують усі разом, доповідають про виконання тільки лідери. Вимпелом переможця нагороджується та група, яка першою за відведений час виконає правильно завдання.
53367. Ігрові хвилинки на уроках музики 48.5 KB
  Мета даної публікації не заглиблюючись у наукові аспекти теорії гри надати педагогові реальну допомогу на шляху впровадження ігрових форм у навчальновиховний процес. Дуже подобаються школярам варіанти психологічних ігрових вправ після проведення яких бажано аналізувати та обговорювати результати отримані під час гри.Кожній дитині надати можливість для виходу її емоцій після чого бажано алізувати та обговорювати результати отримані...
53368. Ігрові технології на уроках 39.5 KB
  Шіллер наприклад стверджував що античні ігри божественні і можуть служити ідеалом будьяких інших видів дозвілля людини. У Древньому Китаї святкові ігри відкривав імператор і сам у них брав участь. Складність визначається різноманіттям форм гри способів участі в ній партнером та алгоритмами проведення гри.
53369. Объемное моделирование и конструирование из бумаги. Игрушки из бумажных полосок 172.5 KB
  Игрушки из бумажных полосок Вид урока Урок беседа Тип урока Урок изучения нового материала Студенты преподаватели Айрапетова Мария Сергеевна Гусева Анна Павловна Ершова Дарья Дмитриевна Максимова Марина Вадимовна Государственный социальный заказ Во исполнение Закона Российской Федерации Об образовании. Добиваться: применения различных форм методов средств технологий при проведении образовательного урока; установления взаимодействия с различными субъектами образовательного процесса. Технологическая карта урока Триединые...
53370. Розвиток слухової уваги, слухової пам’яті та фонематичного сприймання у дітей дошкільного віку 68 KB
  Діти стають у коло непомітно для ведучого вони передають за спиною один одному дзвіночок. Логопед розрає дітям ведмедиків з зображенням цих предметів потім за ширмою озвучує ці предмети а діти повинні відгадати який ведмедик шумить. Дидактична гра Хто кличе Діти по черзі називають ім’я ведучого який стоїть до них спиною. Потім гра ускладнюється і діти кличуть ведучого: Ау то голосно то тихо в залежності від того що скаже логопед: Далеко пішли у ліс Близько пішли у ліс.
53371. Учет косвенных расходов в составе себестоимости продукции. Синтетический учёт движения нематериальных активов 22.77 KB
  Косвенные затраты — затраты, которые, в отличие от прямых затрат, не могут быть непосредственно отнесены на себестоимость одного конкретного вида продукции. Косвенные затраты относятся одновременно ко всем видам продукции и распределяются между ними условно: общепроизводственные и общехозяйственные расходы, часть расходов на продажу и др