85989

Нелинейная регрессия

Лабораторная работа

Информатика, кибернетика и программирование

Записать уравнения прямых линий регрессии и построить их на корреляционном поле. Рассмотреть различные виды уравнений регрессии из набора предлагаемого пакетом MS Excel. Провести сравнение полученных уравнений регрессии и выбрать наиболее адекватное из них.

Русский

2015-04-01

599.5 KB

11 чел.

ЛАБОРАТОРНАЯ  РАБОТА  №  2

Нелинейная регрессия

Даны экспериментальные данные наблюдений для факторов X и Y.

ЗАДАНИЯ:

1. По исходным данным построить корреляционное поле.

2. Найти выборочные числовые характеристики.

3. Записать уравнения прямых линий регрессии и построить их на корреляционном поле.

4. Проверить статистическую значимость коэффициента детерминации при помощи F – статистики Фишера.

5. Рассмотреть различные виды уравнений регрессии из набора, предлагаемого пакетом MS Excel.

6. Провести сравнение полученных уравнений регрессии и выбрать наиболее адекватное из них.

                                            Как это сделать в   EXСEL      

  •  В папке “трафареты” найти файл  « Л.Р. № 2 трафарет.xls ».
  •  Скопировать его в свою папку « Группа ***» и переименовать, вставив вместо слова “трафарет” свою фамилию:

«Л.Р. № 2 Фамилия ».

  •  Открыть файл и приступить к выполнению лабораторной работы.


1. Корреляционное поле

                                            Как это сделать в   EXСEL

  •  Занести исходные данные (выборку) в отведенные для

этого ячейки (столбцы N, O). Столбцам дать имена.

  •  По исходным данным построить корреляционное поле.

(«Мастер диаграмм», «Точечная диаграмма»)

Корреляционное поле должно иметь вид:

2. Нахождение числовых характеристик выборки

                                            Как это сделать в   EXСEL

  •  Найти объем выборки n (ячейка O20).

(Мастер функций, категория Статистические, функция СЧЕТ).

Ячейке присвоить имя (например,  n  или  "объем").

  •  В столбцах B и C в предназначенных для этого ячейках вычислить числовые характеристики факторов N и O:

    – средние (СРЗНАЧ),

    – дисперсии (диспр),

    – стандартные отклонения ( ).

    Ячейкам присвоить соответствующие имена


  •  В указанных в шаблоне ячейках вычислить следующие точечные оценки выборочной совокупности:

    –   ковариацию  («Мастер функций», функция КОВАР),

    –   коэффициент корреляции    (функция КОРЕЛ)

     Ячейкам присвоить соответствующие имена.

3. Уравнения прямых регрессии

Процесс получение уравнения регрессии, нахождения коэффициента детерминации, построения линий регрессии можно автоматизировать, используя встроенные функции пакета MS Excel.

                                            Как это сделать в   EXСEL

  •  Вызвать пункт меню Диаграмма / Добавить линию тренда.
  •  Диаграмму «Корреляционное поле» скопировать через буфер обмена на отведенные в трафарете места (под заголовками «Линейная регрессия» и т.д.). Сделать всего 6 копий.
  •  Для каждого скопированного графика выполнить следующее:
  •  Активизировать поле диаграммы, щелкнув на нем мышью.
  •  Подвести курсор к любой из точек корреляционного поля, щелкнуть правой кнопкой мыши. Точки диаграммы активируются и появляется контекстное меню.
  •  В контекстном меню выбрать пункт «Добавить линию тренда»    ( Появится окно с названием  «Линия тренда» и на нем две вкладки: Тип и Параметры ).
  •  На вкладке «Тип» выбрать нужный тип линии регрессии (он записан в поле над диаграммой). (Для квадратичной и кубической регрессий выбрать пункт Полиномиальная и в поле Степень ввести наибольшую степень для независимой переменной).


  •   Отрыть вкладку «Параметры». Выставить флажок на пунктах  «Показывать уравнение на диаграмме»  и  «Поместить на диаграмме величину достоверности аппроксимации».
  •  Щелкнуть на ОК.
  •  Отредактировать Диаграмму: переместить поле с уравнением регрессии и коэффициентом детерминации на свободное место,

установить необходимый размер шрифта и удерживать в коэффициентах  4 - 5  знаков после запятой.

Диаграмма должна иметь вид:

4. Проверка статистической значимости коэффициента детерминации

Подсчитанный программой коэффициент детерминации не совсем верный. Он считается правильно только для линейной регрессии. В столбцах справа от диаграммы проведем правильные расчеты и проверим адекватность уравнения регрессии по Фишеру. Подсчитаем коэффициент детерминации по формуле

.


                                            Как это сделать в   EXСEL

  •  В столбце  AF9:AF18  вычислить по записанному на диаграмме уравнению регрессии теоретические значения фактора Y (они обозначены Y^).

(Выделять весь столбец, числовые значения коэффициентов вводить с клавиатуры, столбец X вызывать по имени).

Закончить ввод сочетанием Ctrl + Enter.

  •  В столбце  AG9:AG18 подсчитать разности  , используя формулу:      =AG9 – уср
  •  В ячейке AF24 запрограммировать формулу для нахождения коэффициента детерминации R2 (второй вариант).

( Для числителя использовать функцию СУММКВ ).

  •  В ячейку AG28 ввести m число коэффициентов, которые присутствуют в уравнении регрессии.
  •  В ячейке AG31 определить наблюдаемое значение критерия Фишера:

  •  Аналогично рассматриваются остальные варианты уравнений регрессии, предлагаемые в меню.

После обработки всех шести диаграмм занести полученные значения для коэффициента детерминации и для критерия Фишера в таблицу в конце работы.

Проанализировать результаты и выбрать ту линию регрессии, которая наиболее удачно описывает экспериментальные данные.

На отведенных полях в конце работы записать общий вывод, выбранное уравнение и соответствующий коэффициент детерминации.

СОХРАНИТЬ ФАЙЛ ЛАБОРАТОРНОЙ РАБОТЫ В ЛИЧНОЙ ПАПКЕ!


ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ И КОНТРОЛЯ ЗНАНИЙ

  1.   Каким образом по виду корреляционного поля формулируется гипотеза о характере связи между изучаемыми переменными в парной нелинейной регрессии? Укажите наиболее часто используемые математические модели нелинейных регрессий?
  2.  Укажите основные классы, на которые подразделяют нелинейную регрессию.
  3.  Каковы основные особенности квазилинейных регрессий? Приведите примеры наиболее часто используемых математических моделей квазилинейных регрессий.
  4.  Укажите особенности собственно нелинейных регрессий. Приведите примеры наиболее часто используемых математических моделей собственно нелинейных регрессий.
  5.  В чем суть метода линеаризации в нелинейном регрессионном анализе? Для какого класса нелинейных регрессий применяется метод линеаризации и почему?
  6.  Приведите пример линеаризации для любой квазилинейной регрессии. Какая задача решается в результате соответствующей замены переменных?
  7.  Укажите замену переменных для гиперболической и логарифмической регрессиях в методе линеаризации нелинейных регрессий. Каким образом оцениваются коэффициенты в этих уравнениях? Приведите примеры.
  8.  Почему МНК не применяется в собственно нелинейных регрессиях?
  9.  В каких пределах изменяется коэффициент детерминации в парной нелинейной регрессии?
  10.  В чем суть коэффициента детерминации для нелинейной регрессии?
  11.  Сформулируйте понятие доверительной вероятности. Каким образом влияет значение доверительной вероятности на критическое значение F – статистики Фишера?
  12.  По каким критериям выбирается наиболее удачное уравнение нелинейной регрессии из нескольких, составленных для одних и тех же данных наблюдений?
  13.  В чем суть F – статистики Фишера в нелинейном регрессионном анализе?
  14.  Каким образом определяется критическое значение F – статистики Фишера в нелинейном регрессионном анализе? Как геометрически можно интерпретировать значения указанной статистики?
  15.  Каким образом решается задача структуризации математической модели в собственных нелинейных парных регрессий?


ВАРИАНТЫ ИСХОДНЫХ ДАННЫХ ДЛЯ ЛАБОРАТОРНОЙ РАБОТЫ № 2

Номер варианта

1

2

3

4

5

6

7

8

9

10

X

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

1

2,2

17,2

16,0

2,2

7,8

6,0

3,4

5,7

13,0

11,2

2

2,5

14,1

12,7

5,4

7,4

5,2

6,0

3,5

32,0

14,5

3

2,8

10,7

10,0

8,7

8,7

5,4

10,8

5,0

59,2

17,6

4

4,6

10,4

8,4

10,5

8,5

4,2

11,0

10,0

74,2

23,7

5

5,5

8,0

7,3

11,4

11,4

4,0

13,0

8,4

69,7

26,5

6

7,4

7,4

7,8

12,7

13,9

3,6

13,0

10,5

80,0

31,2

7

8,6

5,5

8,6

13,7

15,1

3,1

14,8

20,8

76,0

40,8

8

11,1

5,2

11,1

15,0

15,0

3,3

18,0

38,0

66,2

42,6

9

14,3

3,1

14,3

15,6

15,6

3,5

22,8

40,6

78,0

46,5

10

18,2

3,8

18,2

15,8

15,8

3,7

29,8

49,4

81,2

46,5

Номер варианта

11

12

13

14

15

16

17

18

19

20

X

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

1

20,0

2,0

2,7

14,3

15,4

2,4

2,2

0,9

1,0

0,4

2

12,1

5,2

4,8

10,4

9,8

3,7

4,4

4,0

2,5

0,5

3

6,5

5,6

5,4

11,2

5,6

3,7

6,4

5,4

3,8

0,7

4

4,6

7,4

6,4

9,2

4,6

4,0

8,8

6,4

4,1

1,1

5

1,8

10,6

6,5

8,5

2,6

5,2

9,4

7,7

4,2

1,6

6

1,2

11,3

5,8

6,9

2,1

5,2

10,2

7,4

4,6

2,2

7

0,7

11,5

4,8

6,0

2,4

6,8

11,7

8,2

4,9

2,6

8

0,5

12,6

4,4

5,2

2,0

8,4

12,1

8,0

4,8

4,2

9

0,8

12,5

2,6

6,0

1,4

11,3

13,3

8,5

5,2

6,8

10

0,3

13,4

0,7

4,6

1,4

14,3

13,7

8,3

5,2

11,8

Номер варианта

21

22

23

24

25

26

27

28

29

30

X

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

1

4,7

0,4

13,3

2,3

3,5

11,4

19,5

1,1

12,3

14,4

2

7,8

0,5

12,0

7,6

8,0

12,5

14,5

3,9

12,0

12,5

3

13,6

0,7

9,3

13,1

8,8

11,5

9,7

3,1

11,9

9,8

4

15,4

1,1

8,5

14,4

13,2

11,9

9,4

5,5

10,6

7,6

5

17,2

1,6

7,7

15,1

12,9

11,3

10,6

3,7

8,6

5,2

6

17,6

2,2

7,0

15,3

15,7

9,4

11,4

7,5

7,0

4,9

7

16,2

2,6

5,1

16,2

19,0

10,0

16,2

6,6

6,3

4,2

8

17,0

4,2

2,8

16,3

21,4

10,1

20,2

9,1

6,3

3,0

9

15,6

6,8

2,7

16,9

22,3

8,0

22,3

8,2

4,8

4,1

10

13,4

11,8

2,2

16,6

21,8

7,4

26,7

11,8

4,5

2,2


 

А также другие работы, которые могут Вас заинтересовать

20696. Розв’язання систем нелінійних рівнянь. Метод Ньютона 18.5 KB
  0001; J = [diffy1'x1' diffy1'x2' diffy1'x3' ; diffy2'x1' diffy2'x2' diffy2'x3' ; diffy3'x1' diffy3'x2' diffy3'x3' ]; p=[2;2;2]; x1=p1; x2=p2; x3=p3; dp=[inf;inf;inf]; while maxabsdp1:3 eps dp=[0;0;0]; Fk=[0;0;0]; Jk=evalJ; for i=1:3 Fki=evalFi:; end dp=invJkFk; p=pdp; x1=p1; x2=p2; x3=p3; end p 2.
20697. Криптографічна система RSA 54.28 KB
  5 зашифруємо повідомлення Створемо ключ Зашифруємо файл Відповідно до завдання лабораторної роботи проведемо розрахунки Повідомлення CRDHQS RSA p=5 q=7 N=57=35 p1q1=24 D=5 edmodp1q1=1 e5mod24=1 E=5 Ключ24 e =5 3^5 mod 35=33 18^5 mod 35=23 4^5 mod 35=9 8^5 mod 35=8 17^5 mod 35=12 19^5 mod 35=24 Зашифроване повідомлення 33 23 9 8 12 24 Розшифруєм повідомлення використовуючи ключ d=5 33 33^5 mod 35=3 23^5 mod 35=18 9^5 mod 35=4 8^5 mod 35=8 12^5 mod 35=17 24^5 mod 35=19 Висновки:...
20698. Розподіл ключів, протокол Діфф-Хеллмана 57.93 KB
  При роботі алгоритму кожна сторона: генерує випадкове натуральне число a закритий ключ спільно з віддаленою стороною встановлює відкриті параметри p і g зазвичай значення p і g генеруються на одній стороні і передаються іншій де p є випадковим простим числом g є первісних коренем по модулю p обчислює відкритий ключ A використовуючи перетворення над закритим ключем A = ga mod p обмінюється відкритими ключами з видаленою стороною обчислює загальний секретний ключ K використовуючи відкритий ключ видаленої сторони B і свій закритий ключ a...
20699. Еліптичні криві в криптографії 168.01 KB
  1КІ08 Морозов Артем Еліптична крива над полем K це множина точок проективної площини над K що задовольняють рівнянню разом з точкою на нескінченності. Отже кількість точок на кривій парна 1 точку дає по дві точки можуть давати інші елементи поля і треба не забути про точку на нескінченності. Додавання точок виконується наступним чином: 1 Нейтральний елемент групи: для будьякої точки . 3 Якщо то сумою точок та є 4 Якщо то 5 Якщо то .
20700. Генерування випадкових чисел 89.26 KB
  1КІ08 Морозов Артем Мета роботи: Усвідомити важливість проблеми генерування випадкових чисел під час вирішення задач захисту інформації ознайомитися з деякими способами генерування псевдовипадкових чисел усвідомити сильні і слабкі сторони алгоритмічних методів генерування випадкових чисел. Генератор випадкових чисел англ. Широко використовуються комп'ютерні системи для генерації випадкових чисел але часто вони малоефективні.
20701. Cтенографічний захист інформації 165.67 KB
  Для запуску програми необхідно задати: 1 звуковий файл формату МРЗ; 2 впроваджуваний файл будьякого формату; 3 пароль; 4 коефіцієнт стиснення; 5 рівень скритності. На першому етапі роботи програми впроваджуваний файл стискається з заданим користувачем коефіцієнтом стиснення. Блоксхема алгоритму роботи програми Puff представлена ​​на рисунку. Відповідно до класифікації методів впровадження інформації всі розглянуті в статті програми реалізують форматні методи.
20702. Гамування 75.04 KB
  Відкрите повідомлення MYNAMEІSARTEM Зашифруемо повідомлення Ключ k=i36mod 26 MYNAMEISARTEM 1 2 3 4 5 лат. Зашифроване повідомлення Шифрування Ci=tigimod N 16 8 4 2 1 k=i36 1 2 3 4 5 21 0 1 1 1 0 7 1 0 1 1 0 16 0 0 0 1 0 20 1 0 1 1 0 15 0 1 0 1 0 16 0 0 0 1 0 14 1 0 0 1 0 11 0 0 0 0 0 15 0 1 0 1 0 15 0 1 0 1 0 8 1 0 1 1 1 9 1 1 1 0 1 17 0 0 1 0 1 11 0 1 1 1 1 Висновки: В даній лабораторній роботі було розглянуто принципи гамування створено гаму і зашифровано за допомогою неї повідомлення.
20703. Шифри заміни 14.03 KB
  Ключ k=i27mod 33; i позиція букви у вхідному алфавіті k позиція букви у вихідному алфавіті Вхідний алфавіт: а б в г ґ д е є ж з и і ї й к л м н о п р с т у ф х ц ч ш щ ь ю я Відкрите повідомлення: Морозов Зашифроване повідомлення: Єіліціи 2. Ключ 0 1 2 3 4 5 0 ж р ш в щ г 1 о у м х ф і 2 ч а п л к з 3 д ц ь ю н ґ 4 ї и я б т с 5 е є й Відкрите повідомлення: Морозов Зашифроване повідомлення: 12100110251003 Висновки: Шифри заміни почали використовувати ще до н.е але попри те вони є популярними і на даний...
20704. Шифри перестановки 19.62 KB
  Ключ Сонечко 5 4 3 1 6 2 4 С о н е ч к о 1 2 4 4 3 5 6 м е н і т р и н а д ц я т и й м и н а л о я п а с я г н я т а з а с е л о м Виписуємо у порядку зростання цифр кожен стовбець :мнйяял еампто тяаяа ндиаам іцнсз ртлгс иионе 2 Побудова шкали рознесення і по ній шкалу набору для шифрування з подвійною перестановкою Ключ: Сонечко веселе с о н е ч к о 5 4 3 1 6 2 4 В 3 М Я Т А С л О Е 7 Е Ц И П Я Е М С 21 Н Д Й Я Г С е 7 І А М О Н А л 16 т Н И Л Я З е 7 р И н А т А Маршрут запитуваннязчитування Змінюємо рядки у відповідності зростання цифр е...