85989

Нелинейная регрессия

Лабораторная работа

Информатика, кибернетика и программирование

Записать уравнения прямых линий регрессии и построить их на корреляционном поле. Рассмотреть различные виды уравнений регрессии из набора предлагаемого пакетом MS Excel. Провести сравнение полученных уравнений регрессии и выбрать наиболее адекватное из них.

Русский

2015-04-01

599.5 KB

18 чел.

ЛАБОРАТОРНАЯ  РАБОТА  №  2

Нелинейная регрессия

Даны экспериментальные данные наблюдений для факторов X и Y.

ЗАДАНИЯ:

1. По исходным данным построить корреляционное поле.

2. Найти выборочные числовые характеристики.

3. Записать уравнения прямых линий регрессии и построить их на корреляционном поле.

4. Проверить статистическую значимость коэффициента детерминации при помощи F – статистики Фишера.

5. Рассмотреть различные виды уравнений регрессии из набора, предлагаемого пакетом MS Excel.

6. Провести сравнение полученных уравнений регрессии и выбрать наиболее адекватное из них.

                                            Как это сделать в   EXСEL      

  •  В папке “трафареты” найти файл  « Л.Р. № 2 трафарет.xls ».
  •  Скопировать его в свою папку « Группа ***» и переименовать, вставив вместо слова “трафарет” свою фамилию:

«Л.Р. № 2 Фамилия ».

  •  Открыть файл и приступить к выполнению лабораторной работы.


1. Корреляционное поле

                                            Как это сделать в   EXСEL

  •  Занести исходные данные (выборку) в отведенные для

этого ячейки (столбцы N, O). Столбцам дать имена.

  •  По исходным данным построить корреляционное поле.

(«Мастер диаграмм», «Точечная диаграмма»)

Корреляционное поле должно иметь вид:

2. Нахождение числовых характеристик выборки

                                            Как это сделать в   EXСEL

  •  Найти объем выборки n (ячейка O20).

(Мастер функций, категория Статистические, функция СЧЕТ).

Ячейке присвоить имя (например,  n  или  "объем").

  •  В столбцах B и C в предназначенных для этого ячейках вычислить числовые характеристики факторов N и O:

    – средние (СРЗНАЧ),

    – дисперсии (диспр),

    – стандартные отклонения ( ).

    Ячейкам присвоить соответствующие имена


  •  В указанных в шаблоне ячейках вычислить следующие точечные оценки выборочной совокупности:

    –   ковариацию  («Мастер функций», функция КОВАР),

    –   коэффициент корреляции    (функция КОРЕЛ)

     Ячейкам присвоить соответствующие имена.

3. Уравнения прямых регрессии

Процесс получение уравнения регрессии, нахождения коэффициента детерминации, построения линий регрессии можно автоматизировать, используя встроенные функции пакета MS Excel.

                                            Как это сделать в   EXСEL

  •  Вызвать пункт меню Диаграмма / Добавить линию тренда.
  •  Диаграмму «Корреляционное поле» скопировать через буфер обмена на отведенные в трафарете места (под заголовками «Линейная регрессия» и т.д.). Сделать всего 6 копий.
  •  Для каждого скопированного графика выполнить следующее:
  •  Активизировать поле диаграммы, щелкнув на нем мышью.
  •  Подвести курсор к любой из точек корреляционного поля, щелкнуть правой кнопкой мыши. Точки диаграммы активируются и появляется контекстное меню.
  •  В контекстном меню выбрать пункт «Добавить линию тренда»    ( Появится окно с названием  «Линия тренда» и на нем две вкладки: Тип и Параметры ).
  •  На вкладке «Тип» выбрать нужный тип линии регрессии (он записан в поле над диаграммой). (Для квадратичной и кубической регрессий выбрать пункт Полиномиальная и в поле Степень ввести наибольшую степень для независимой переменной).


  •   Отрыть вкладку «Параметры». Выставить флажок на пунктах  «Показывать уравнение на диаграмме»  и  «Поместить на диаграмме величину достоверности аппроксимации».
  •  Щелкнуть на ОК.
  •  Отредактировать Диаграмму: переместить поле с уравнением регрессии и коэффициентом детерминации на свободное место,

установить необходимый размер шрифта и удерживать в коэффициентах  4 - 5  знаков после запятой.

Диаграмма должна иметь вид:

4. Проверка статистической значимости коэффициента детерминации

Подсчитанный программой коэффициент детерминации не совсем верный. Он считается правильно только для линейной регрессии. В столбцах справа от диаграммы проведем правильные расчеты и проверим адекватность уравнения регрессии по Фишеру. Подсчитаем коэффициент детерминации по формуле

.


                                            Как это сделать в   EXСEL

  •  В столбце  AF9:AF18  вычислить по записанному на диаграмме уравнению регрессии теоретические значения фактора Y (они обозначены Y^).

(Выделять весь столбец, числовые значения коэффициентов вводить с клавиатуры, столбец X вызывать по имени).

Закончить ввод сочетанием Ctrl + Enter.

  •  В столбце  AG9:AG18 подсчитать разности  , используя формулу:      =AG9 – уср
  •  В ячейке AF24 запрограммировать формулу для нахождения коэффициента детерминации R2 (второй вариант).

( Для числителя использовать функцию СУММКВ ).

  •  В ячейку AG28 ввести m число коэффициентов, которые присутствуют в уравнении регрессии.
  •  В ячейке AG31 определить наблюдаемое значение критерия Фишера:

  •  Аналогично рассматриваются остальные варианты уравнений регрессии, предлагаемые в меню.

После обработки всех шести диаграмм занести полученные значения для коэффициента детерминации и для критерия Фишера в таблицу в конце работы.

Проанализировать результаты и выбрать ту линию регрессии, которая наиболее удачно описывает экспериментальные данные.

На отведенных полях в конце работы записать общий вывод, выбранное уравнение и соответствующий коэффициент детерминации.

СОХРАНИТЬ ФАЙЛ ЛАБОРАТОРНОЙ РАБОТЫ В ЛИЧНОЙ ПАПКЕ!


ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ И КОНТРОЛЯ ЗНАНИЙ

  1.   Каким образом по виду корреляционного поля формулируется гипотеза о характере связи между изучаемыми переменными в парной нелинейной регрессии? Укажите наиболее часто используемые математические модели нелинейных регрессий?
  2.  Укажите основные классы, на которые подразделяют нелинейную регрессию.
  3.  Каковы основные особенности квазилинейных регрессий? Приведите примеры наиболее часто используемых математических моделей квазилинейных регрессий.
  4.  Укажите особенности собственно нелинейных регрессий. Приведите примеры наиболее часто используемых математических моделей собственно нелинейных регрессий.
  5.  В чем суть метода линеаризации в нелинейном регрессионном анализе? Для какого класса нелинейных регрессий применяется метод линеаризации и почему?
  6.  Приведите пример линеаризации для любой квазилинейной регрессии. Какая задача решается в результате соответствующей замены переменных?
  7.  Укажите замену переменных для гиперболической и логарифмической регрессиях в методе линеаризации нелинейных регрессий. Каким образом оцениваются коэффициенты в этих уравнениях? Приведите примеры.
  8.  Почему МНК не применяется в собственно нелинейных регрессиях?
  9.  В каких пределах изменяется коэффициент детерминации в парной нелинейной регрессии?
  10.  В чем суть коэффициента детерминации для нелинейной регрессии?
  11.  Сформулируйте понятие доверительной вероятности. Каким образом влияет значение доверительной вероятности на критическое значение F – статистики Фишера?
  12.  По каким критериям выбирается наиболее удачное уравнение нелинейной регрессии из нескольких, составленных для одних и тех же данных наблюдений?
  13.  В чем суть F – статистики Фишера в нелинейном регрессионном анализе?
  14.  Каким образом определяется критическое значение F – статистики Фишера в нелинейном регрессионном анализе? Как геометрически можно интерпретировать значения указанной статистики?
  15.  Каким образом решается задача структуризации математической модели в собственных нелинейных парных регрессий?


ВАРИАНТЫ ИСХОДНЫХ ДАННЫХ ДЛЯ ЛАБОРАТОРНОЙ РАБОТЫ № 2

Номер варианта

1

2

3

4

5

6

7

8

9

10

X

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

1

2,2

17,2

16,0

2,2

7,8

6,0

3,4

5,7

13,0

11,2

2

2,5

14,1

12,7

5,4

7,4

5,2

6,0

3,5

32,0

14,5

3

2,8

10,7

10,0

8,7

8,7

5,4

10,8

5,0

59,2

17,6

4

4,6

10,4

8,4

10,5

8,5

4,2

11,0

10,0

74,2

23,7

5

5,5

8,0

7,3

11,4

11,4

4,0

13,0

8,4

69,7

26,5

6

7,4

7,4

7,8

12,7

13,9

3,6

13,0

10,5

80,0

31,2

7

8,6

5,5

8,6

13,7

15,1

3,1

14,8

20,8

76,0

40,8

8

11,1

5,2

11,1

15,0

15,0

3,3

18,0

38,0

66,2

42,6

9

14,3

3,1

14,3

15,6

15,6

3,5

22,8

40,6

78,0

46,5

10

18,2

3,8

18,2

15,8

15,8

3,7

29,8

49,4

81,2

46,5

Номер варианта

11

12

13

14

15

16

17

18

19

20

X

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

1

20,0

2,0

2,7

14,3

15,4

2,4

2,2

0,9

1,0

0,4

2

12,1

5,2

4,8

10,4

9,8

3,7

4,4

4,0

2,5

0,5

3

6,5

5,6

5,4

11,2

5,6

3,7

6,4

5,4

3,8

0,7

4

4,6

7,4

6,4

9,2

4,6

4,0

8,8

6,4

4,1

1,1

5

1,8

10,6

6,5

8,5

2,6

5,2

9,4

7,7

4,2

1,6

6

1,2

11,3

5,8

6,9

2,1

5,2

10,2

7,4

4,6

2,2

7

0,7

11,5

4,8

6,0

2,4

6,8

11,7

8,2

4,9

2,6

8

0,5

12,6

4,4

5,2

2,0

8,4

12,1

8,0

4,8

4,2

9

0,8

12,5

2,6

6,0

1,4

11,3

13,3

8,5

5,2

6,8

10

0,3

13,4

0,7

4,6

1,4

14,3

13,7

8,3

5,2

11,8

Номер варианта

21

22

23

24

25

26

27

28

29

30

X

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

1

4,7

0,4

13,3

2,3

3,5

11,4

19,5

1,1

12,3

14,4

2

7,8

0,5

12,0

7,6

8,0

12,5

14,5

3,9

12,0

12,5

3

13,6

0,7

9,3

13,1

8,8

11,5

9,7

3,1

11,9

9,8

4

15,4

1,1

8,5

14,4

13,2

11,9

9,4

5,5

10,6

7,6

5

17,2

1,6

7,7

15,1

12,9

11,3

10,6

3,7

8,6

5,2

6

17,6

2,2

7,0

15,3

15,7

9,4

11,4

7,5

7,0

4,9

7

16,2

2,6

5,1

16,2

19,0

10,0

16,2

6,6

6,3

4,2

8

17,0

4,2

2,8

16,3

21,4

10,1

20,2

9,1

6,3

3,0

9

15,6

6,8

2,7

16,9

22,3

8,0

22,3

8,2

4,8

4,1

10

13,4

11,8

2,2

16,6

21,8

7,4

26,7

11,8

4,5

2,2


 

А также другие работы, которые могут Вас заинтересовать

1129. Влияние углерода на твердость термически обработанных сталей 175 KB
  Зависимость между содержанием углерода в стали и ее твердостью после отжига и закалки. Влияние углерода на структуру и свойства отожженных сталей. Количество остаточного аустенита при закалке сталей при увеличении содержания углерода
1130. Определение прокалываемости стали 162.5 KB
  Ознакомиться с методикой определения прокаливаемости. Выяснить влияние химического состава сталей и размеров деталей на прокаливаемость. Неоднородный аустенит. Нерастворенные частицы (карбиды, оксиды, интерметаллические соединения).
1131. Цементация стали 581.5 KB
  Сущность процесса цементации. Химико-термическая обработка, при которой поверхность стальных деталей насыщается углеродом. Термическая обработка цементованных деталей.
1132. Операционный контроль геометрических параметров оптических деталей 143 KB
  Ознакомится с основными геометрическими параметрами оптических деталей и методами их измерения. Изучить состав и устройство основных видов оборудования и приспособлений для измерения параметров оптических деталей. Овладеть навыками измерений толщины, радиуса кривизны, предела разрешения и других параметров линз, пластин и призм.
1133. Исследование процесса сборки автоколлимационной зрительной трубки 234.5 KB
  Ознакомиться с методом автоколлимации и способами его реализации. Изучить конструкцию автоколлимационной трубки. Овладеть навыками проведения юстировочных и контрольных операций в процессе сборки оптических систем. Провести измерения плоскопараллельности методом автоколлимации.
1134. Сборка и контроль объективов насыпной конструкции 177.5 KB
  Виды, конструкции и назначения объективов. Особенности сборки объективов. Параметры, характеризующие качество сборки. Схема установки для контроля характеристик объективов по дифракционной точке. Возможные изображения дифракционной точки.
1135. Контроль предела разрешения, фокусных расстояний и качества сборки узлов ЭОС 119.5 KB
  Ознакомиться с параметрами оптических узлов, по которым проверяется правильность их сборки. Изучить методику оценки качества сборки по дифракционному изображению точки. Получить навыки определения фокусного расстояния и предела разрешения оптических систем.
1136. Центрировка линз. методы измерения децентричности 224.5 KB
  Методы контроля децентричности. Контроль с помощью коллиматора и микроскопа. Схема контроля децентрировки линз в проходящем свете с помощью коллиматора и микроскопа. Контроль с помощью автоколлимационного микроскопа. Контроль деценрировки на автоколлимационном микроскопе А.А.Забелина.
1137. Миры штриховые для определения предела разрешения 143 KB
  Штриховая мира состоит из элементов с различным количеством штрихов одинаковой длины. Ширина штрихов каждой миры убывает от элемента №1 к элементу номер 25 по закону геометрической прогрессии со знаменателем. Число штрихов в каждой группе элементов миры.