86061

Найбільший спільний дільник

Лекция

Математика и математический анализ

Вивчити алгоритм Евкліда знаходження найбільшого спільного дільника многочленів; вивчити основну властивість НСД двох многочленів; вивести критерій взаємно простих многочленів...

Украинкский

2017-02-21

367.5 KB

7 чел.

Лекція № 2.

Тема.Найбільший спільний дільник.

Мета вивчання:

  • вивчити алгоритм Евкліда знаходження найбільшого спільного дільника многочленів;
  • вивчити основну властивість НСД двох многочленів;
  • вивести критерій взаємно простих многочленів.

План

  1. Найбільший спільний дільник многочленів. Алгоритм Евкліда.
  2. Основна властивість НСД многочленів.
  3. Взаємно прості многочлени та їх властивості.

Література:[13], стор.137-143, 149.

Зміст лекції

1. Нехай дано довільні ненульові многочлени  і . Многочлен  називаєтьсяспільним дільником для  і , якщо він служить дільником для кожного з цих многочленів.

Властивість V показує, що до числа спільних дільників многочленів  і  належать усі многочлени нульового степеня. Якщо інших спільних дільників ці два многочлена не мають, то вони називаютьсявзаємнопростими.

Найбільшим спільним дільником ненульових многочленів і називається такий многочлен , який є їх спільним дільником, і разом з тим сам ділиться на будь-який інший спільний дільник цих многочленів. НСД позначається так: ().

Для практичного відшукання найбільшого спільного дільника застосовується алгоритм послідовного ділення або алгоритм Евкліда. Він полягає в наступному: нехай дано многочлени  і . Ділимо  на  і одержуємо, взагалі кажучи, деяку остачу . Ділимо потім  на  і одержуємо остачу , ділимо на  і т.д. Тому що степені остач увесь час знижаються, то в цій ціпочці послідовних ділень ми повинні дійти до місця, на якому ділення виконається цілком і тому процес зупиниться.Та остача , на яку цілком ділиться попередня остача  і буде найбільшим спільним дільником многочленів  і . Цей факт сформулюємо у вигляді теореми.

Теорема (про існування НСД многочленів).НСД многочленів  і співпадає з останньою ненульовою остачею в алгоритмі Евкліда.

# Для доведення запишемо викладене вище у вигляді наступних рівностей:

(1)

Остання рівність показує, що  є дільником для . Звідси виходить, що обидва доданки правої частини передостанньої рівності діляться на , а тому  буде дільником і для . Далі, таким самим шляхом, підіймаючись угору, ми отримаємо, що  є дільником і для . Звідси, ураховуючи другу рівність, буде слідувати, що  служить дільником для , а тому, на підставі першої рівності, - і для . Таким чином,  є спільним дільником для  і .

Візьмемо тепер довільний спільний дільник  многочленів  і . Тому що ліва частина і перший доданок правої частини першої з рівностей (1) діляться на , то  також буде ділитися на . Переходячи до другого і наступних рівностей ми таким самим засобом одержимо, що на  діляться  многочлени . Нарешті, якщо вже буде доведено, що  і  діляться на , то із передостанньої рівності ми одержимо, що  ділиться  на . Таким чином,  дійсно буде найбільшим спільним дільником для  і .   #

Теорема (про єдність НСД многочленів).НСД многочленів  і  є єдиним з точністю до множника нульового степеня (число), тобто усі НСД двох даних ненульових многочленів є асоційованими многочленами.

# Нехай  і  - НСД многочленів  і , тоді, якщо  - НСД, то він повинен ділитися на , а з другого боку  - НСД, значить він повинен ділитися на , звідси слідує, що #

Отже, НСД 2 многочленів визначений лише з точністю до множника нульового степеня, тому можна умовитись, що старший коефіцієнт найбільшого спільного дільника двох многочленів буде завжди вважатися рівним одиниці.

Користуючись цією умовою, можна сказати, що два многочлени тоді і тільки тоді взаємно прості, якщо їх найбільший спільний дільник дорівнює одиниці.

Приклад. Знайти НСД многочленів  і

     

          

Відповідь: .

2.Теорема.Якщо  НСД многочленів  і , то можна знайти такі многочлени  і , що

(2)

можна вважати при цьому, якщо степінь многочленів  і  більше 0, що степінь  менше степеня , а степінь  менше степеня  (всі многочлени з кільця ).

# Доведення основане на рівностях (1). Якщо ми вважаємо, що  і позначимо , то передостання з рівностей (1) дасть:

.

Підставляючи сюди вираз  через  і  із попередньої рівності (2), одержуємо:

,

де, очевидно, . Продовжуючи підніматися вгору по рівностям (1), прийдемо, нарешті, до рівності (2). Для доведення другого твердження теореми припустимо, що многочлени і , що задовольняють рівності (2), вже знайдені, але, наприклад, степінь  більший або дорівнює степеню . Ділимо  на :

,

де степінь  менший за степінь , і підставляємо цей вираз у (2). Одержуємо рівність

.

Степінь, що стоїть при , вже менший степеня . Степінь многочлена, що стоїть у дужках, буде в свою чергу, менший степеня , тому що у протилежному випадку степінь другого додатку лівої частини був би не менший степеня добутку , а тому що степінь першого доданку менший степеня цього добутку, то уся  ліва частина мала б степінь, більший або рівний степеню , тоді як многочлен  свідомо має при наших припущеннях, менший степінь. #

Приклад 2. Знайти многочлени  і , що задовольняють рівність (2), якщо , .

# 1). Знаходимо НСД:

2). Відшукуємо  і :

Запишемо (2) у вигляді

, в результаті чого робота спроститься  степ.,  степ.,.

.

.

3. Два многочлени називаютьсявзаємно простими, якщо їх НСД є многочлен нульового степеня (з точністю до постійного множника – це 1).

Теорема (критерій взаємно простих многочленів)

Два многочлени  і  є взаємно простими тоді, і тільки тоді, коли існують многочлени  і  що задовольняють умові:

.(3)

# Відомо, що для будь-яких многочленів і  існують многочлени  і , що задовольняють (2). Нехай і  взаємно прості, тобто їх НСД є многочлен нульового степеня, тоді рівність (2) буде мати вигляд: .

Навпаки, нехай  і  такі, що для них існують  і  такі, що виконується (3).

Позначимо , тоді , тоді  на підставі властивостей подільності, тоді , що можливо лише тоді, коли - многочлен нульового степеня , але в цьому випадку  і  взаємно прості.  #

Ізвластивостей взаємно простих многочленів відзначимо наступні:

1). Якщо многочлен  взаємно простий з кожним із многочленів   та , то він взаємно простий із їх добутком.

# Дійсно, існують за (3) такі многочлени  і , що

.

Помножуючи цю рівність на , одержимо:

.

Звідки слідує, що будь-який спільний дільник  і  був би дільником і для ; однак, за умови .#

2). Якщо добуток многочленів  і  ділиться на , але  і  взаємно прості, то  ділиться на .

# Дійсно, помножуючи рівність

на , одержимо:

.

Обидва доданки лівої частини цієї рівності діляться на ; на нього діляться, отож, і . #

3). Якщо многочлен  ділиться на кожний з многочленів  і , які між собою взаємно прості, то  ділиться і на їх добуток.

# Дійсно, , так що добуток, що стоїть справа, ділиться на . Тому за властивістю 2,  ділиться на , звідки .  #

Зауваження. Усі доведені властивості взаємно простих многочленів можуть бути узагальнені на випадок будь-якого скінченого числа многочленів, що задовольняють згаданим умовам.

Питання для самостійної роботи.

Виконання розрахункової роботи №2. Тема: “Подільність многочленів”.

Дробово-раціональні функції. Розклад на найпростіші дроби. ([2], стор.210-213)


 

А также другие работы, которые могут Вас заинтересовать

60283. Державні і народні символи України, та їх історичне походження 60 KB
  Мета. Ознайомити дітей з національними та народними символами України; формувати національну свідомість школярів; виховувати почуття любові до своєї землі; виховувати патріотів рідної держави, повагу до її символів, розширювати пізнавальні інтереси школярів.
60284. Внеклассное мероприятие: За здоровый образ жизни 159.5 KB
  Цель: научить детей вести здоровый образ жизни Задачи: пропаганда здорового образа жизни; закрепление знаний правил личной гигиены; развитие общей культуры личности учащихся, расширение кругозора...
60285. Свято «У чистій воді риби багато, у доброзичливої людини друзів багато» 141.5 KB
  Мета: шляхом створення психологічних ситуацій вибору підвести учнів з мовленевими вадами до розуміння важливості взаємодопомоги в колективі; сприяти створенню дружнього дитячого колективу, виховувати чемне ставлення учнів одне до одного.
60286. Урок мужества: «Эхо победы» 108 KB
  Выходит 1 группа детей: Отгремели давно залпы наших орудий А в воронке от бомбы трава мурава Но войну не забыли суровые люди И смеются сквозь слезы Ведь память жива Они помнят походы и дальние страны И простые от сердца народа слова.
60287. Корисні і шкідливі звички 54 KB
  Мета: Поглибити знання учнів про корисні та шкідливі звички; виховувати негативне ставлення до шкідливих звичок бажання вести здоровий спосіб життя. Є звички квітки звички як дуби є гарні звички звички є погані.
60288. ДО СВИДАНИЯ, ОСЕНЬ! 65 KB
  Отгадать загадку просит: Кто художник этот 1 Кто сегодня в парке нашем Листья красками раскрасил И кружит их с веток сносит Это наступила осень 2 От дождя деревья мокнут Лужи всё никак не сохнут.
60289. Сценарій математичного свята “Веселі змагання” 172.5 KB
  Діти ви захочете допомогти принцесі і визволити її з полону Для цього треба розвязати математичні завдання. А на дверях 10 замків щоб зняти замки треба їх розкодувати а для цього розвязати певні завдання.
60290. Класифікація та причини виникнення надзвичайних ситуацій мирного часу 99 KB
  Надзвичайні ситуації природного характеру розрізняють на: ситуації 1 Геологічного походження землетруси обвали природного 2 Мете реологічного смерчі бурі урагани зливи ожеледь морози характеру...
60291. ПОЭЗИЯ И РУССКИЙ РОМАНС (А. ФЕТ и Ф. ТЮТЧЕВ) 6.03 MB
  Стоит учесть, что лирика не терпит аналитического препарирования. Многие старшеклассники иронично относятся к открытому проявлению эмоций, стесняются проявить их. А уж русский романс они вообще не знают.