86247

Визуализация численных методов

Курсовая

Информатика, кибернетика и программирование

В зависимости от числа независимых переменных и типа, входящих в них производных дифференциальные уравнения делятся на две существенно различные категории: обыкновенные, содержание одну независимую переменную и производные по ней, и уравнения в частных производных, содержащие несколько...

Русский

2015-04-04

166.5 KB

1 чел.

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ

УРАЛЬСКИЙ ТЕХНИЧЕСКИЙ ИНСТИТУТ СВЯЗИ И ИНФОРМАТИКИ

Факультет телекоммуникаций

Визуализация численных методов

            Выполнила: студентка гр. МЕ-52                       Раздрогина Т.А.

                                                                                                    Руководитель: Минина Е.Е.

Екатеринбург, 2006

Содержание

Введение……………………………………………………………………………………3

Постановка задачи…………………………………………………………………………4

Суть используемых методов………………………………………………………………5

Описание методов решения……………………………………………………………….6

Блок схема основных процедур…………………………………………………………...8

Исходная форма……………………………………………………………………………11

Форма конечный вид………………………………………………………………………12

Листинг программы………………………………………………………………………..13

Решение задачи в MathCAD……………………………………………………………….15

Заключение………………………………………………………………………………….16


Введение.

Существует множество технических систем и технологических процессов, характеристики которых непрерывно меняются со временем t. Такие явления обычно подчиняются физическим законам, которые формируются в виде дифференциальных уравнений.

Дифференциальными называются уравнения, содержащие одну или несколько производных. Лишь очень немногие из них удаётся  решить без помощи вычислительной техники. Поэтому численные методы решения дифференциальных уравнений играют важную роль в практике инженерных расчётов.

В зависимости от числа независимых переменных и типа, входящих в них производных дифференциальные уравнения делятся на две существенно различные категории: обыкновенные, содержание одну независимую переменную и производные по ней, и уравнения в частных производных, содержащие несколько независимых переменных и производные по ним, которые называются частными.

Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменой и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши.


Постановка задачи.

В курсовой работе необходимо решить задачу Коши для дифференциального уравнения первого порядка на отрезке [x0, xк ] с шагом h  и начальным условием y(x0)= y0 методами Эйлера и Эйлера модифицированный.

Дано дифференциальное  уравнение: (x+1)2 dy+ydx =0,

Общее уравнение: ln׀y׀= -arctg(x)+c

                               Начальные условия     x0 =0

                        xk =1.8

                         h=0.1

                      y0 =1

Численное решение задачи Коши сводится к табулированию искомой функции. Ответ должен быть получен в виде таблицы результатов. Данные таблицы визуализировать на форме в виде графиков.


Суть используемых методов.

Метод Эйлера. Иногда этот метод называют методом Рунге – Кутта первого порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочерёдно в каждой точке. Для расчёта значения функции в очередном узле необходимо использовать значения функции в одном предыдущем узле.

Метод Эйлера модифицированный. Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге – Кутта второго порядка точности. При использовании модифицированного метода Эйлера шаг h делится на два отрезка.


Описание методов решения.

Дано дифференциальное уравнение первого порядка

                                                      (x+1)2 dy+ydx =0

        с начальным условием

y(x0)= y0.

Выберем шаг h=0.1 и введём обозначения:

         xi = x0+h*i  и yi=y(xi)., i=1,2,3…

                         xi – узлы сетки,

                                   yi  - значение интегральной функции в узлах сетки.

        Начальные условия задачи:

                                                 x0 =1

                                                 xk =1.8

                                                 y0 =1

1. Метод Эйлера

Иллюстрации к решению приведены на рисунке 1.

Проведём прямую AB через точку (x (i),y (i)) под углом α. При этом

                                       tgα = f(x(i),y(i)).                                    (1)

В соответствии с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведём замену точки интегральной функции точкой, лежащей на касательной АВ.

Тогда y(i+1)=y(i)+∆y                                                                     (2)

Из прямоугольного треугольника ABC  tgα = ∆y / h                 (3)

Приравняем правые части (1) и (3). Получим  ∆y / h =  f(x(i),y(i)).

Отсюда    ∆y = h* f(x(i),y(i)).

Подставим в это выражение формулу (2), а затем преобразуем его. В результате получаем формулу расчёта очередной точки интегральной функции:

            y(i+1) = y(i) + h* f(x(i),y(i))                                           (4).

Из формулы (4) видно, что для расчёта каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке. На рисунке погрешность вычислений для i – го шага  обозначена е.

           2. Метод Эйлера модифицированный

При использовании модифицированного метода Эйлера шаг h делится на два отрезка. Иллюстрации к решению приведены на рисунке 2.

Решение происходит в несколько этапов:

  1.  Обозначим точки: А (x(i),y(i)), C (x(i)+h/2, y(i)+h/2*f (x(i),y(i))) и B (x(i+1),y(i+1)).
  2.  Через точку А проведём прямую под углом α, где

                                        tgα = f (x(i),y(i))

  1.  На этой прямой найдём точку С (x(i)+h/2, y(i)+h/2*f(x(i),y(i))).
  2.  Через точку С проведём прямую под углом  α1, где                                             

                    tgα1 = f (x(i)+h/2,y(i)+ h/2*f (x(i),y(i)))

  1.  Через точку А проведём прямую, параллельную последней прямой.
  2.  Найдём точку  B (x(i+1),y(i+1)). Будем считать B(x(i+1),y(i+1)) решением дифференциального уравнения при x = x(i+1)
  3.  После проведения вычислений, аналогичных вычислениям, описанным в методе Эйлера, получим формулу для определения значения y(i+1):

                                 y(i+1) = y(i) + h*f(x(i)+h/2, y(i)+h/2*f(x(i),y(i))

Модифицированный Эйлер даёт меньшую погрешность. На рисунке 2 это хорошо видно. Так величина Е1 характеризует погрешность метода Эйлера, а Е – погрешность метода Эйлера модифицированного.  


Блок схема основных процедур.




Исходная форма.


Форма конечный вид


Листинг программы.

Dim X(9) As Single

Dim Y(9) As Single

Dim Y1(9) As Single

Dim Y2(9) As Single

Private Function f(t As Single, z As Single) As Single

f = -z / (1+t)2

End Function

Private Function f1(l As Single) As Single

f1 =  Exp (-atan(l)+3.14/4)

End Function

Private Sub Command1_Click()

   x0 = Val(Text1.Text)

   xk = Val(Text2.Text)

   y0 = Val(Text3.Text)

   h = Val(Text4.Text)

   MSFlexGrid1.TextMatrix(0, 0) = "X"

   MSFlexGrid1.TextMatrix(0, 1) = "Y"

   MSFlexGrid1.TextMatrix(0, 2) = "Y1"

   MSFlexGrid1.TextMatrix(0, 3) = "Y2"

   n = (xk - x0) / h

   MSFlexGrid1.Rows = n + 2

   Max = f1(X(0))

   Min = f1(X(0))

   X(0)=x0

   Y1(0) = y0

   Y2(0) = y0

   For i = 0 To n

   X(i) = x0 + i * h

   Y(i) = Round(f1(X(i)))

   Y1(i + 1) = Round(Y1(i) + h * f(X(i), Y1(i)))

   Y2(i + 1) = Round(Y2(i) + h * f(X(i) + h / 2, Y2(i) + h / 2 * f(X(i), Y2(i))))

   MSFlexGrid1.TextMatrix(i + 1, 0) = X(i)

   MSFlexGrid1.TextMatrix(i + 1, 1) = Y(i)

   MSFlexGrid1.TextMatrix(i + 1, 2) = Y1(i)

   MSFlexGrid1.TextMatrix(i + 1, 3) = Y2(i)

   If Y(i) > Max Then Max = Y(i)

   If Y(i) < Min Then Min = Y(i)

   If Y1(i) > Max Then Max = Y1(i)

   If Y1(i) < Min Then Min = Y1(i)

   If Y2(i) > Max Then Max = Y2(i)

   If Y2(i) < Min Then Min = Y2(i)

   Next i

   For i = 0 To n - 1

   d = 2412 / (xk - x0)

   d1 = 3368 / (Min - Max)

   z1 = Round((X(i) - X(0)) * d + 240, 0)

   z2 = Round(3720 - Abs((Y(i) - Min) * d1), 0)

   z3 = Round((X(i + 1) - X(0)) * d + 240, 0)

   z4 = Round(3720 - Abs((Y(i + 1) - Min) * d1), 0)

   q1 = Round(3720 - Abs((Y1(i) - Min) * d1), 0)

   q2 = Round(3720 - Abs((Y1(i + 1) - Min) * d1), 0)

   o1 = Round(3720 - Abs((Y2(i) - Min) * d1), 0)

   o2 = Round(3720 - Abs((Y2(i + 1) - Min) * d1), 0)

   Picture1.Line (z1, z2)-(z3, z4)

   Picture1.Line (z1, q1)-(z3, q2)

   Picture1.Line (z1, o1)-(z3, o2)

   Next i

End Sub

Заключение

В данной курсовой работе мы решили задачу Коши для дифференциального уравнения первого порядка на отрезке [x0, xк ] с шагом h  и начальным условием y(x0)= y0 методами Эйлера и Эйлера модифицированный, предварительно тщательно ознакомившись с этими методами.

Ответ получен в виде таблицы результатов. Данные таблицы визуализированы на форме в виде графиков. Для уменьшения погрешности вычислений очень удобен модифицированный метод Эйлера.


B

О

x(i)

x(i+1)

hаавывывывысывсывсывсысысысысыссчс

y(i)

  y

x

е

y= y(x)

y(i+1)

α

A

Рис. 1

B

C

A

x

α1

α

h/2

x(i)

O

y

h

x(i+1)

E1

E

y= y(x)

Рис. 2

    Начало

x0, xk, y0, h

n = (xk – x0)/h

Max = f1(x0)

Min = f1(x0)

                                                   i = 0 … n

Y1(0) = y0

Y2(0) = y0

X(i) = x0 + i*h

      X(i), Y(i), Y1(i), Y2(i)

Y(i)>max

1

4

2

3

-

+

Y(i) = f1(X(i))

1(i+1) = Y(i)+h*f(X(i),Y(i))

Y2(i + 1) = Y2(i) + h * f(X(i) + h / 2, Y2(i) + h / 2 * f(X(i), Y(i))                              

-

+

 Max = Y(i)

4

3

Y(i)<min

 Min = Y(i)

Шаблон графика

d = 2412 / (xk - x0)

d1 = 3368 / (Max - Min)

z1 = (X(i) - X(0)) * d + 240

z2 = 3720 - (Y(i) - Min) * d1

z3 = (X(i + 1) - X(0)) * d + 240

z4 = 3720 - (Y(i + 1) - Min) * d1

  Line (z1, z2) - (z3, z4)

q1 = 3720 - (Y1(i) - Min) * d1

q2 = 3720 - (Y1(i + 1) - Min) * d1

  Line (z1, q1) - (z2, q2)

2

o1 = 3720 - (Y2(i) - Min) * d1

o2 = 3720 - (Y2(i + 1) - Min) * d1

1

          Line (z1, o1) - (z2, o2)

     Конец

        f (t)

f = -z / 1+t2

     Конец

        f1 (l)

f1=Exp(-arctg(1)+π/4)

     Конец

+

 Max = Y1(i)

Y2(i)<min

 Min = Y2(i)

 Max = Y2(i)

+

+

+

Y2(i)>max

 Min = Y1(i)

Y1(i)<min

Y1(i)>max

i = 0 … n-1

6

6


 

А также другие работы, которые могут Вас заинтересовать

39420. Ортопедическая стоматология 471.5 KB
  Роль учёных бывшего СССР и РБ в развитии ортопедической стоматологии и совершенствование оказания ортопедической помощи населению. Полное отсутствие коронки зуба. Клиника, функциональные нарушения, методы протезирования. Восстановительные штифтовые конструкции, их разновидности. Показания к применению штифтовых зубов по Ричмонду, по Ильиной-Маркосян, простого штифтового зуба, культевой штифтовой вкладки.
39421. РАЗРАБОТКА СХЕМЫ ОРГАНИЗАЦИИ СВЯЗИ 1.03 MB
  Размещение необслуживаемых регенерационных пунктов НРП вдоль кабельной линии передачи осуществляется в соответствии с номинальной длиной регенерационного участка РУ для проектируемой ЦСП. При необходимости допускается проектирование укороченных относительно номинального значения РУ которые следует располагать прилегающими к ОП или ПВ так как блоки линейных регенераторов в НРП не содержат искусственных линий ИЛ. Необходимое число НРП определить по формуле: N = n 1; 8 Количество НРП на секциях ОП1 ПВ и ОП2 ПВ определить из...
39422. ПРОЕКТИРОВАНИЕ ЦИФРОВОЙ ЛИНИИ ПЕРЕДАЧИ МНОГОКАНАЛЬНОЙ СИСТЕМЫ 401.5 KB
  В состав аппаратуры ИКМ120У входят: оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП. Сформированный в оборудовании ВВГ цифровой сигнал в коде МЧПИ или ЧПИ поступает в оконечное оборудование линейного тракта которое осуществляет согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии оборудования линейного тракта...
39423. Будова та принцип роботи комп’ютера 146 KB
  Компю’тер — це електронна система, яка призначена для опрацювання різних видів інформації, що подається в цифрових кодах за наперед складеними програмами (алгоритмами).
39425. Перечень и структура производственных подразделений энергохозяйства 1007 KB
  1 Характеристика и назначение энергохозяйства на промышленном предприятии Энергохозяйство предприятия включает в себя главную понизительную подстанцию ГПП центральный распределительный пункт ЦРП распределительную кабельную сеть 10 кВ и цеховые трансформаторные подстанции ТП. От ГПП по двум КЛ питается ЦРП имеющий две секции шин которые могут соединяться при помощи секционного выключателя. Питание цеховых ТП Осуществляется КЛ 10 кВ от ЦРП через комплектные ячейки КРУ с выключателями и от соседних ТП.2 Длины КЛ км Линия Вариант 1...
39426. Разработать программное обеспечение для работы со структурными типами данных с реализацией премирования по факультетам 371 KB
  Функции. Она работает с определенной конкретной базой данных; в ней в основном используются сложные типы данных структуры и функции то есть структура программы не требует много ресурсов. Они создаются из базовых: Массивы объектов заданного типа; Функции с параметрами заданных типов возвращающие значение заданного типа; Указатели на объекты или функции заданного типа; Ссылки на объекты или функции заданного типа; Константы которые являются значениями заданного типа; Классы содержащие последовательности объектов...
39427. Разработка линии связи между ОП1 (Гомель) и ОП2 (Мозырь) через ПВ (Наровля) 281 KB
  В состав оборудования ИКМ120 входят: оборудование вторичного временного группообразования ВВГ конечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП. Сформированный в оборудовании ВВГ цифровой сигнал в коде МЧПИ или ЧПИ HDB3 или MI поступает в оконечное оборудование линейного тракта которое осуществляет согласование выхода оборудование ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии оборудования линейного...