86247

Визуализация численных методов

Курсовая

Информатика, кибернетика и программирование

В зависимости от числа независимых переменных и типа, входящих в них производных дифференциальные уравнения делятся на две существенно различные категории: обыкновенные, содержание одну независимую переменную и производные по ней, и уравнения в частных производных, содержащие несколько...

Русский

2015-04-04

166.5 KB

1 чел.

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ

УРАЛЬСКИЙ ТЕХНИЧЕСКИЙ ИНСТИТУТ СВЯЗИ И ИНФОРМАТИКИ

Факультет телекоммуникаций

Визуализация численных методов

            Выполнила: студентка гр. МЕ-52                       Раздрогина Т.А.

                                                                                                    Руководитель: Минина Е.Е.

Екатеринбург, 2006

Содержание

Введение……………………………………………………………………………………3

Постановка задачи…………………………………………………………………………4

Суть используемых методов………………………………………………………………5

Описание методов решения……………………………………………………………….6

Блок схема основных процедур…………………………………………………………...8

Исходная форма……………………………………………………………………………11

Форма конечный вид………………………………………………………………………12

Листинг программы………………………………………………………………………..13

Решение задачи в MathCAD……………………………………………………………….15

Заключение………………………………………………………………………………….16


Введение.

Существует множество технических систем и технологических процессов, характеристики которых непрерывно меняются со временем t. Такие явления обычно подчиняются физическим законам, которые формируются в виде дифференциальных уравнений.

Дифференциальными называются уравнения, содержащие одну или несколько производных. Лишь очень немногие из них удаётся  решить без помощи вычислительной техники. Поэтому численные методы решения дифференциальных уравнений играют важную роль в практике инженерных расчётов.

В зависимости от числа независимых переменных и типа, входящих в них производных дифференциальные уравнения делятся на две существенно различные категории: обыкновенные, содержание одну независимую переменную и производные по ней, и уравнения в частных производных, содержащие несколько независимых переменных и производные по ним, которые называются частными.

Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменой и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши.


Постановка задачи.

В курсовой работе необходимо решить задачу Коши для дифференциального уравнения первого порядка на отрезке [x0, xк ] с шагом h  и начальным условием y(x0)= y0 методами Эйлера и Эйлера модифицированный.

Дано дифференциальное  уравнение: (x+1)2 dy+ydx =0,

Общее уравнение: ln׀y׀= -arctg(x)+c

                               Начальные условия     x0 =0

                        xk =1.8

                         h=0.1

                      y0 =1

Численное решение задачи Коши сводится к табулированию искомой функции. Ответ должен быть получен в виде таблицы результатов. Данные таблицы визуализировать на форме в виде графиков.


Суть используемых методов.

Метод Эйлера. Иногда этот метод называют методом Рунге – Кутта первого порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочерёдно в каждой точке. Для расчёта значения функции в очередном узле необходимо использовать значения функции в одном предыдущем узле.

Метод Эйлера модифицированный. Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге – Кутта второго порядка точности. При использовании модифицированного метода Эйлера шаг h делится на два отрезка.


Описание методов решения.

Дано дифференциальное уравнение первого порядка

                                                      (x+1)2 dy+ydx =0

        с начальным условием

y(x0)= y0.

Выберем шаг h=0.1 и введём обозначения:

         xi = x0+h*i  и yi=y(xi)., i=1,2,3…

                         xi – узлы сетки,

                                   yi  - значение интегральной функции в узлах сетки.

        Начальные условия задачи:

                                                 x0 =1

                                                 xk =1.8

                                                 y0 =1

1. Метод Эйлера

Иллюстрации к решению приведены на рисунке 1.

Проведём прямую AB через точку (x (i),y (i)) под углом α. При этом

                                       tgα = f(x(i),y(i)).                                    (1)

В соответствии с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведём замену точки интегральной функции точкой, лежащей на касательной АВ.

Тогда y(i+1)=y(i)+∆y                                                                     (2)

Из прямоугольного треугольника ABC  tgα = ∆y / h                 (3)

Приравняем правые части (1) и (3). Получим  ∆y / h =  f(x(i),y(i)).

Отсюда    ∆y = h* f(x(i),y(i)).

Подставим в это выражение формулу (2), а затем преобразуем его. В результате получаем формулу расчёта очередной точки интегральной функции:

            y(i+1) = y(i) + h* f(x(i),y(i))                                           (4).

Из формулы (4) видно, что для расчёта каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке. На рисунке погрешность вычислений для i – го шага  обозначена е.

           2. Метод Эйлера модифицированный

При использовании модифицированного метода Эйлера шаг h делится на два отрезка. Иллюстрации к решению приведены на рисунке 2.

Решение происходит в несколько этапов:

  1.  Обозначим точки: А (x(i),y(i)), C (x(i)+h/2, y(i)+h/2*f (x(i),y(i))) и B (x(i+1),y(i+1)).
  2.  Через точку А проведём прямую под углом α, где

                                        tgα = f (x(i),y(i))

  1.  На этой прямой найдём точку С (x(i)+h/2, y(i)+h/2*f(x(i),y(i))).
  2.  Через точку С проведём прямую под углом  α1, где                                             

                    tgα1 = f (x(i)+h/2,y(i)+ h/2*f (x(i),y(i)))

  1.  Через точку А проведём прямую, параллельную последней прямой.
  2.  Найдём точку  B (x(i+1),y(i+1)). Будем считать B(x(i+1),y(i+1)) решением дифференциального уравнения при x = x(i+1)
  3.  После проведения вычислений, аналогичных вычислениям, описанным в методе Эйлера, получим формулу для определения значения y(i+1):

                                 y(i+1) = y(i) + h*f(x(i)+h/2, y(i)+h/2*f(x(i),y(i))

Модифицированный Эйлер даёт меньшую погрешность. На рисунке 2 это хорошо видно. Так величина Е1 характеризует погрешность метода Эйлера, а Е – погрешность метода Эйлера модифицированного.  


Блок схема основных процедур.




Исходная форма.


Форма конечный вид


Листинг программы.

Dim X(9) As Single

Dim Y(9) As Single

Dim Y1(9) As Single

Dim Y2(9) As Single

Private Function f(t As Single, z As Single) As Single

f = -z / (1+t)2

End Function

Private Function f1(l As Single) As Single

f1 =  Exp (-atan(l)+3.14/4)

End Function

Private Sub Command1_Click()

   x0 = Val(Text1.Text)

   xk = Val(Text2.Text)

   y0 = Val(Text3.Text)

   h = Val(Text4.Text)

   MSFlexGrid1.TextMatrix(0, 0) = "X"

   MSFlexGrid1.TextMatrix(0, 1) = "Y"

   MSFlexGrid1.TextMatrix(0, 2) = "Y1"

   MSFlexGrid1.TextMatrix(0, 3) = "Y2"

   n = (xk - x0) / h

   MSFlexGrid1.Rows = n + 2

   Max = f1(X(0))

   Min = f1(X(0))

   X(0)=x0

   Y1(0) = y0

   Y2(0) = y0

   For i = 0 To n

   X(i) = x0 + i * h

   Y(i) = Round(f1(X(i)))

   Y1(i + 1) = Round(Y1(i) + h * f(X(i), Y1(i)))

   Y2(i + 1) = Round(Y2(i) + h * f(X(i) + h / 2, Y2(i) + h / 2 * f(X(i), Y2(i))))

   MSFlexGrid1.TextMatrix(i + 1, 0) = X(i)

   MSFlexGrid1.TextMatrix(i + 1, 1) = Y(i)

   MSFlexGrid1.TextMatrix(i + 1, 2) = Y1(i)

   MSFlexGrid1.TextMatrix(i + 1, 3) = Y2(i)

   If Y(i) > Max Then Max = Y(i)

   If Y(i) < Min Then Min = Y(i)

   If Y1(i) > Max Then Max = Y1(i)

   If Y1(i) < Min Then Min = Y1(i)

   If Y2(i) > Max Then Max = Y2(i)

   If Y2(i) < Min Then Min = Y2(i)

   Next i

   For i = 0 To n - 1

   d = 2412 / (xk - x0)

   d1 = 3368 / (Min - Max)

   z1 = Round((X(i) - X(0)) * d + 240, 0)

   z2 = Round(3720 - Abs((Y(i) - Min) * d1), 0)

   z3 = Round((X(i + 1) - X(0)) * d + 240, 0)

   z4 = Round(3720 - Abs((Y(i + 1) - Min) * d1), 0)

   q1 = Round(3720 - Abs((Y1(i) - Min) * d1), 0)

   q2 = Round(3720 - Abs((Y1(i + 1) - Min) * d1), 0)

   o1 = Round(3720 - Abs((Y2(i) - Min) * d1), 0)

   o2 = Round(3720 - Abs((Y2(i + 1) - Min) * d1), 0)

   Picture1.Line (z1, z2)-(z3, z4)

   Picture1.Line (z1, q1)-(z3, q2)

   Picture1.Line (z1, o1)-(z3, o2)

   Next i

End Sub

Заключение

В данной курсовой работе мы решили задачу Коши для дифференциального уравнения первого порядка на отрезке [x0, xк ] с шагом h  и начальным условием y(x0)= y0 методами Эйлера и Эйлера модифицированный, предварительно тщательно ознакомившись с этими методами.

Ответ получен в виде таблицы результатов. Данные таблицы визуализированы на форме в виде графиков. Для уменьшения погрешности вычислений очень удобен модифицированный метод Эйлера.


B

О

x(i)

x(i+1)

hаавывывывысывсывсывсысысысысыссчс

y(i)

  y

x

е

y= y(x)

y(i+1)

α

A

Рис. 1

B

C

A

x

α1

α

h/2

x(i)

O

y

h

x(i+1)

E1

E

y= y(x)

Рис. 2

    Начало

x0, xk, y0, h

n = (xk – x0)/h

Max = f1(x0)

Min = f1(x0)

                                                   i = 0 … n

Y1(0) = y0

Y2(0) = y0

X(i) = x0 + i*h

      X(i), Y(i), Y1(i), Y2(i)

Y(i)>max

1

4

2

3

-

+

Y(i) = f1(X(i))

1(i+1) = Y(i)+h*f(X(i),Y(i))

Y2(i + 1) = Y2(i) + h * f(X(i) + h / 2, Y2(i) + h / 2 * f(X(i), Y(i))                              

-

+

 Max = Y(i)

4

3

Y(i)<min

 Min = Y(i)

Шаблон графика

d = 2412 / (xk - x0)

d1 = 3368 / (Max - Min)

z1 = (X(i) - X(0)) * d + 240

z2 = 3720 - (Y(i) - Min) * d1

z3 = (X(i + 1) - X(0)) * d + 240

z4 = 3720 - (Y(i + 1) - Min) * d1

  Line (z1, z2) - (z3, z4)

q1 = 3720 - (Y1(i) - Min) * d1

q2 = 3720 - (Y1(i + 1) - Min) * d1

  Line (z1, q1) - (z2, q2)

2

o1 = 3720 - (Y2(i) - Min) * d1

o2 = 3720 - (Y2(i + 1) - Min) * d1

1

          Line (z1, o1) - (z2, o2)

     Конец

        f (t)

f = -z / 1+t2

     Конец

        f1 (l)

f1=Exp(-arctg(1)+π/4)

     Конец

+

 Max = Y1(i)

Y2(i)<min

 Min = Y2(i)

 Max = Y2(i)

+

+

+

Y2(i)>max

 Min = Y1(i)

Y1(i)<min

Y1(i)>max

i = 0 … n-1

6

6


 

А также другие работы, которые могут Вас заинтересовать

25789. Профилактика слуховых нарушений у детей и взрослых. Влияние шума на организм 16.53 KB
  Влияние шума на организм. Влияние шума на организм. Под воздействием шума превышающего 8590 дБ в первую очередь снижается слуховая чувствительность на высоких частотах. Человек работая при шуме привыкает к нему но продолжительное действие сильного шума вызывает общее утомление может привести к ухудшению слуха а иногда и к глухоте нарушается пищеварение происходят изменения объема внутренних органов.
25790. Строение носа и носовой полости 16.4 KB
  В центре носовой полости перегородка которая делит её пополам. Каждая половина носовой полости имеет 4 стенки: 1. Под носовыми раковинами имеются углубления которые называются верхний средний нижний носовой ход.
25791. Строение рта и ротовой полости 15.28 KB
  Передняя часть языка подвижна. Задняя часть языка неподвижна корень. Посередине языка проходит волокнистая перегородка. Поверхность языка имеет вкусовые рецепторы которые расположены в сосочках языка.
25792. Строение глотки 15.02 KB
  Носоглотка имеет сообщение с носовой полостью через хоаны. Таким образом слуховые трубы соединяют носоглотку с барабанной полостью. Ротоглотка сообщается с ротовой полостью через широкое отверстие зев.
25793. Строение гортани 15.39 KB
  К нему прикрепляются голосовые связки; перстневидный имеет форму перстня печаткой повёрнутого внутрь; надгортанник его изогнутый верхний край прикрывает вход в трахею. Парные хрящи: рожковидные; клиновдные; черпаловидные к ним прикреплены голосовые связки. Таким образом связки натягиваются между щитовидным и черпаловидными хрящами. Мышцы гортани по функции делят на 3 группы: мышцы натягивающие голосовые связки; мышцы расширяющие голосовую щель; мышцы суживающие голосовую щель.
25794. Проводниковый и корковый отделы речедвигательной сенсорной системы. Краткая характеристика, значение 15.09 KB
  Корковый отдел представлен речевыми центрами: 1. Это центр Брока центр осуществления моторной речи. Центр письменной речи центр графии. В височной доле верхняя височная извилина среднезадний отдел центр Вернике центр сенсорной речи центр понимания речи.
25795. Значение курса «Анатомия, физиология и патология органов слуха и речи» для преподавателя - дефектолога 14.23 KB
  Значение курса Анатомия физиология и патология органов слуха и речи для преподавателя дефектолога. ОСНОВНАЯ ЦЕЛЬ КУРСА подготовка студентов по теоретическим и практическим вопросам отоларингологии в объеме необходимом педагогулогопеду для воспитания и обучения детей на основе индивидуального подхода используя методы коррекции и компенсации в зависимости от наличия слухового восприятия развития речи и общего развития ребенка. Задачи курса:  сформировать у будущих педагогов представление о слухе речи как единой функциональной...
25796. Понятие о рецепторе, органе чувств, анализаторе, сенсорной системе 15.51 KB
  Понятие о рецепторе органе чувств анализаторе сенсорной системе. Реце́птор сложное образование состоящие из нервных окончаний дендритов чувствительных нейронов глии специализированных образований межклеточного вещества и специализированных клеток других тканей которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды раздражитель в нервный импульс. Орган чувств Орган чувств представляет собой физиологический прибор для восприятия сигналов и для их первичного анализа. В состав органов чувств помимо...
25797. Рецепторы классификация, свойства. Преобразование сигналов в рецепторах. Принципы работы первичновоспринимающих и вторичновоспринимающих рецепторов 17.4 KB
  Пример мономодальных органы слуха зрительные рецепторы. В зависимости от источника информации все рецепторы делятся на 3 больших группы: 1. Экстерорецепторы воспринимают сигналы из внешней среды. Интерорецепторы воспринимают информацию из внутренней среды организма.