86357

Расчет испарителя

Курсовая

Производство и промышленные технологии

Учитывая жесткость конструкции греющей секции и возможность возникновения дополнительных термических напряжений в корпусе, принимаем окончательно S=22мм.

Русский

2015-04-05

294 KB

4 чел.

Министерство образования Российской Федерации

филиал государственного образовательного учреждения

высшего профессионального образования

«Московский Энергетический институт

технический университет»

в г. Волжском

Кафедра промышленной теплоэнергетики

Курсовая работа

по дисциплине:

«Конструирование теплоэнергетического

оборудования»

Расчет испарителя

                                                                                Выполнил студент группы ПТЭ-00

                                                                                Сергеев Андрей Александрович

                                                                                 Принял доцент кафедры ПТЭ

                                                                                Горчаков Александр Михайлович

Волжский 2004

Содержание:

        Задание …………………………………….………………………..…………………

        

        1. Тепловой конструктивный расчет …………………….……………….  

        2. Гидравлический расчет ………………………………………..…….……..  

        3. Прочностной расчет……………………………………………..……………

        

        Список используемой литературы………………………………………….

        Приложение…………………………………………………………………………….

Исходные данные.

Производительность испарительной установки: 18т/ч

Параметры пара греющей секции  Р=1,0Мпа

                                                          t=250˚С

Параметры пара в корпусе             Р=0,56Мпа

                                                          t=152˚С

Схема включения испарителя в тепловую схему блока.

Тепловой и конструктивный расчет.

Определим мощность теплового потока

                                          (1)

qИ1-теплота парообразования вторичного пара

Температурный напор в испарителе равен

                                                          (2)

Поверхность нагрева равна

                                                              (3)

С запасом на заглушаемые трубки принимаем F=110м²

Определим геометрические размеры испарителя.

Принимаем трубки стальные 38х2,5мм; высоту секции Н=3500мм.

При толщине трубных досок δТР=40 мм. Активная высота трубок

составит h=3400 мм.

Число трубок n равно

                                                                (4)

Принимаем треугольную разбивку трубок в трубной доске.

толщину греющей секции s=22мм

                                                         (5)

кольцевой зазор между корпусом греющей секции и корпусом испарителя δ=185мм. Тогда внутренний диаметр корпуса испарителя составит   

                                                (6)

Далее проводим поверочный тепловой расчет.

По графику определяем ωО=1,32м/с

Кратность циркуляции равна

                                                     (7)

Удельная тепловая мощность на поверхности трубок

                                                     (8)

                                           (9)

здесь r =1960 кДж/кг

υ=0,166·10-6 м2

Т.к. Re>ReКР, найдем α1 со стороны конденсирующегося пара при температуре пленки

                                                         (10)

Из таблицы имеем для tПЛ=201˚С

                                                  (11)

введем поправочный коэффициент 0,75

                          (12)

                             (13)

Для tИ1=152˚С по таблицам воды и водяного пара имеем:

ρ'=890 кг/м3

ρ''=4.95 кг/м3

r=2020 кДж/кг

сВ=4,285 кДж/кг

                                                  (14)

                        (15)

Nu=0.023٠Re0.8٠Pr0.37                                                              (16)

                                                         (17)

Pr=1

вводим поправку на оксидную пленку

                                                              (18)

Температурный напор в стенке равен

                                             (9)

Складываем температурные напоры:

                                                         (20)

                                                      (21)

Т.о. совпадение с предварительным расчетом на основании графиков вполне удовлетворительное, и можно оставить принятые геометрические размеры испарителя.

Расчет  на прочность элементов испарителя.

Расчет корпуса испарителя.

Расчетное давление в корпусе р=0,56Мпа внутренний диаметр D=5037мм. Материал корпуса ст.3 σДОП =117,6 МПа, φ=0,95; η=1,0

                                                     (22)

Так как в данном случае С=1 мм, после округления до ближайшего целого размера получаем окончательно  S=14мм.

Расчет корпуса греющей секции.

Расчетное давление р=1Мпа  внутренний диаметр D=4670мм. Максимальная расчетная температура t=300ْС. Материал корпуса ст.3 σДОП =106 МПа, φ=0,95; η=1,0

 

Учитывая жесткость конструкции греющей секции и возможность возникновения дополнительных термических напряжений в корпусе, принимаем окончательно S=22мм.

Список используемой литературы

  1.  Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. Справочник – М.: Издательство МЭИ, 1999г.

  1.  Ганенко А.П. Оформление текстовых и графических материалов при подготовке дипломных проектов, курсовых и письменных экзаменационных работ (требования ЕСКД). Учебник для начального профессионального образования. – 2-е изд., перераб./ А.П. Ганенко, М.И. Лапсарь – М., 2003г.

  1.  Гиршфельд В.Я., Князев А.М., Куликов В.Е. Расчет стационарных теплообменников. Пособие по курсовому и дипломному проектированию. – М., 1974г.    

  1.  Стерман Л.С. и др. Тепловые и атомные электрические станции. Учебник для вузов / Л.С. Стерман, В.М. Лавыгин, С.Г. Тишин. – М.: Энергоатомиздат, 1989г.  

  1.  Елизаров Д.П. Теплоэнергетические установки электростанций. Учебник для студентов энергомашиностроительных специальностей вузов. М., Энергия, 1967г.

  1.  Тепловые и атомные электрические станции: Справочник / Под общ. ред. В.А. Григорьева, В.М. Зорина – 2-е изд., перераб. – М., Энергоатомиздат., 1989г.


 

А также другие работы, которые могут Вас заинтересовать

74230. Р-п переход. Образование и зонная диаграмма р-n перехода 1.57 MB
  Образование и зонная диаграмма рn перехода Электронно-дырочным или pn переходом называют контакт двух полупроводников одного вида с различными типами проводимости электронным и дырочным. Классическим примером pn перехода являются: nSi pSi nGe pGe.8 приведены зонные диаграммы иллюстрирующие этапы формирования электронно-дырочного перехода...
74231. Контакт металл – полупроводник. Барьер Шоттки 1.2 MB
  В зависимости от этих соотношений в области контакта могут реализоваться три состояния. Второе состояние соответствует условию обогащения приповерхностной области полупроводника дырками в pтипе и электронами в nтипе в этом случае реализуется омический контакт. И наконец в третьем состоянии приповерхностная область полупроводника обеднена основными носителями в этом случае в области контакта со стороны полупроводника формируется область пространственного заряда ионизованных доноров или акцепторов и реализуется блокирующий контакт или...
74232. Полупроводниковые диоды. Характеристики идеального диода на основе pn перехода 1.29 MB
  В зависимости от внутренней структуры типа количества и уровня легирования внутренних элементов диода и вольтамперной характеристики свойства полупроводниковых диодов бывают различными. Характеристики идеального диода на основе pn перехода Основу выпрямительного диода составляет обычный электроннодырочный переход. Как было показано в главе 2 вольтамперная характеристика такого диода имеет ярко выраженную нелинейность приведенную на рисунке 4. В прямом смещении ток диода инжекционный большой по величине и представляет собой...
74233. Аналитическая модель p – n – перехода Разновидности диодов 1.94 MB
  Варикапы Зависимость барьерной емкости СБ от приложенного обратного напряжения VG используется для приборной реализации. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения VG. Задавая профиль легирования в базе варикапа NDx можно получить различные зависимости емкости варикапа от напряжения CVG линейно убывающие экспоненциально убывающие.
74234. Развитие феодальной экономики в Западной Европе в средние века 61 KB
  Расцвет феодализма в странах Западной Европы отмеченный экономическим подъемом основанным на внутренней колонизации освоении новых земель увеличении сбора сельскохозяйственных культур развитии животноводства; возрождении городов превратившихся в центры ремесленного производства и торговли. Развитие товарного производства и товарноденежных отношений сопровождалось коммутацией ренты появлением ярмарок кредитного дела банков. Расширялись товарноденежные отношения уничтожалась личная зависимость крестьян начался процесс...
74235. Становление индустриальной цивилизации. 68.5 KB
  Большую роль в разложении феодализма и генезисе буржуазных отношений сыграли географические открытия конца XV середины XVII в. середина XVI в.; португальские плавания к Индии и берегам Восточной Азии начиная с экспедиции Васко де Гама; испанские тихоокеанские экспедиции XVI в. Период русских и голландских открытий середина XVI середина XVII в.
74236. ПЕРВОБЫТНОЕ ХОЗЯЙСТВО: ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ, ЧЕРТЫ И ОСОБЕННОСТИ 54 KB
  В соответствии с ней история человечества делится на три больших этапа в зависимости от материала из которого изготовлялись орудия труда: каменный век: 3 млн лет тому назад конец III тысячелетия до н. Вовторых основой производственных отношений первобытного строя была коллективная общинная собственность на орудия труда и средства производства характеризовавшаяся низким уровнем и медленными темпами развития производительных сил уравнительным распределением материальных благ. Важнейшей чертой отличающей человека от животного является...
74237. ДВЕ МОДЕЛИ ХОЗЯЙСТВЕННОГО РАЗВИТИЯ: ДРЕВНЕВОСТОЧНАЯ ЭКОНОМИКА И АНТИЧНОЕ ХОЗЯЙСТВО 58.5 KB
  Отличительной чертой восточного типа хозяйства являлась государственная собственность на землю и ирригационные сооружения. В Древнем Египте регулярно проводились переписи населения и хозяйства в основном для распределения трудовой повинности. Это обусловило невысокий уровень развития хлебопашества в греческих полисах постоянный переход от зернового хозяйства к интенсивному виноградарству и садоводству. Хозяйства носили как правило многоотраслевой характер.
74238. Факторы самобытности в развитии Российской цивилизации 32 KB
  Ее основными элементами были: Община как первичная хозяйственно-социальная ячейка а не как частнособственническое образование как на Западе; Государство с его особой ролью организатора и творца гражданского общества. Но государство было одновременно и сильным и слабым. Слабость проявлялась в чрезвычайно низком коэффициенте полезного действия : государство не смогло создать стабильного общества и само неоднократно разрушалось. В то же время это слабое несовершенное государство было единственным интегратором и организатором общества и...