86502

Метрологическое обеспечение средств измерений уровней электромагнитного излучение на рабочем месте

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Источниками электромагнитной энергии радиочастотного и микроволнового диапазонов в окружающей среде служат антенные системы радиолокационных станций, радио- и телерадиостанций, в том числе систем мобильной радиосвязи, а также физиотерапевтические аппараты и персональные ЭВМ.

Русский

2015-04-08

350.79 KB

2 чел.

58

МИНИСТЕРСТВО ТРАНСПОРТА РФ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Самарский государственный университет путей сообщения

(СамГУПС)

Кафедра «Автоматизация, телемеханика и связь на ж.д. транспорте»

курсовая работа

по дисциплине:

«Информационно-измерительные системы»

На тему: «Метрологическое обеспечение средств измерений уровней электромагнитного излучение на рабочем месте»

Выполнил: студент V курса

                    Локтева А.В.

    Группа: ММО-1781

                                                                                     Проверил:  

                                                                                                     доц. Волик В.Г.

САМАРА 2012

Содержание:

1.Электромагнитное поле……………………………………………….……..3

1.1 Характеристики электромагнитного поля…………………………5

2. Механизмы воздействия электромагнитного поля на человека….……..15

3.Гигиеническое нормирование электромагнитных полей в окружающей среде…………………………………………………………………………….19

3.1. Принципы гигиенического нормирования воздействия ЭМП в России и за рубежом………….……………………………………..….19

4.Основные нормативные документы (НД) по санитарно-эпидемиологическому нормированию воздействий электромагнитных полей на население……………………………………………….…………………….25

4.3.Санитарно-эпидемиологические нормативы для электромагнитных полей………………………………………………………………………25

4.4.Санитарно-эпидемиологические нормативы для электрического и магнитного полей промышленной частоты (50 Гц)…………………..26

4.3.Санитарно-эпидемиологические нормативы для электромагнитного поля радиочастотного диапазона………………………………..……….29

5.Метрологическое обеспечение измерений параметров электромагнитного поля……………………………………………….………………………………36

6.Измеритель параметров электрического и магнитного полей                       BE - МЕТР-АТ002…………………………………………………….……….39

7.Практическая часть……………………………………………………….….54

Библиографический список……………………………………………...……..55

 


1.Электромагнитное поле.

Электромагнитное поле является особой формой материи. Различные части спектра электромагнитного поля характеризуются разными областями значений величины, которую называют частотой или связанной с ней через скорость света в вакууме длиной волны. В зависимости от этого параметра спектр электромагнитных излучений обычно делят на три части: радиоизлучение (диапазон длин волн до 0,1 мм), оптическое, включающее в себя инфракрасную, видимую и ультрафиолетовую области (до 10-2 мкм) и ионизирующее, к которому относят рентгеновское и гамма-излучения. При такой классификации спектра электромагнитных излучений исключаются электромагнитные явления, не зависящие от времени, соответствующие бесконечно большой длине волны или нулевой частоте, т.е. статические поля. Однако, электростатические и магнитостатические поля также являются физическими факторами, воздействующими на человека.

В данном параграфе рассмотрены электромагнитные поля: статические и с частотами от 0 до 300 ГГц. К факторам электромагнитной природы, находящимся в этом диапазоне, к потенциально опасным для здоровья человека относят гипогеомагнитные поля, постоянные электрические и магнитные поля, переменные электромагнитные поля (ЭМП) в диапазоне частот от 1 Гц до 300 ГГц, в котором особо выделяют электромагнитные поля промышленной частоты 50/60 Гц (ЭМП ПЧ) и электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ) от 10 кГц до 300 ГГц.

Электростатическое поле (ЭСП) отмечается часто в бытовых условиях при использовании тканей из волокон с высокими диэлектрическими свойствами, эксплуатации персональных ЭВМ, при применении установок для ионизации воздушного пространства и т.д.

Источниками постоянного магнитного поля (ПМП) в быту могут быть средства электротранспорта (поезда метрополитена, железной дороги, трамваи), физиотерапевтическая аппаратура или диагностическое оборудование (установки ядерного магнитного резонанса).

Источниками ЭМП ПЧ являются элементы токопередающих систем различного напряжения (линии электропередачи, распределительные устройства и др.), электротранспорт, различные типы бытового электрооборудования.

Источниками электромагнитной энергии радиочастотного и микроволнового диапазонов в окружающей среде служат антенные системы радиолокационных станций, радио- и телерадиостанций, в том числе систем мобильной радиосвязи, а также физиотерапевтические аппараты и персональные ЭВМ. Причем, уровень электромагнитных полей радиочастотного диапазона искусственного происхождения, созданных человеком, существенно превышает уровень естественных полей.

Из-за того, что у человека нет органов чувств, непосредственно реагирующих на ЭМП ПЧ, населению практически неизвестен тот факт, что в спектре электромагнитных излучений Земли из-за радиочастотных излучений произошли масштабные изменения. В некоторых участках спектра излучений Земля «светит» ярче Солнца. Такое сильное отклонение от естественного состояния электромагнитного спектра планеты произошло в XX веке в результате изобретения беспроводных средств коммуникаций, использующих электромагнитные волны радиочастотного диапазона. Радиосвязь, телевидение, радионавигация, системы сотовой телефонной связи явились источниками негативного влияния на окружающую среду и человека.

Особо нужно выделить сотовую связь. Беспроводная связь на радиочастотах возникла более ста лет назад, и аспекты безопасности при ее использовании достаточно хорошо изучены и регламентированы в законодательных актах и многочисленных нормативных документах. Традиционная беспроводная связь (радиосвязь) в отличие от проводной связи (телефонии) для потребителя была односторонней. Радиоцентры, являющиеся источниками электромагнитного излучения, находились у профессионально подготовленных людей, обеспечивающих передачу радиосигналов, а потребитель имел возможность с помощью радиоприемников их принимать. В радиоцентр можно было позвонить по телефону, но возможности связаться с радиоцентром таким же способом, как радиоцентр с потребителем, не было. У массового потребителя отсутствовал необходимый компонент двухсторонней связи - радиопередатчик. Теперь, с развитием системы сотовой персональной связи, такая возможность появилась. В руки потребителя в буквальном смысле попал достаточно мощный источник ЭМП, который с помощью антенны не только осуществляет связь и передает информацию (полезный эффект), но и производит облучение самого потребителя (опасный эффект).

Для решения вопросов обеспечения экологической безопасности ЭМП в первую очередь необходимо определить величины, которыми характеризуется электромагнитное поле, и единицы, в которых они измеряются.

  1.  Характеристики электромагнитного поля.

Существуют четыре основные векторные функции координат и времени, определяющие электромагнитное поле:

 - напряженность электрического поля;

электрическая индукция;

напряженность магнитного поля;

 - магнитная индукция.

Радиус-вектор  означает зависимость от пространственных координат, t - от времени.

В изотропной среде (в среде, свойства которой не зависят от направления) векторы  и  связаны с  и  соотношениями:

,                                              (1.1)

где ε - диэлектрическая проницаемость - параметр, характеризующий электрические свойства среды, μ - магнитная проницаемость - параметр, характеризующий магнитные свойства среды,  - плотность тока проводимости, σ - удельная проводимость среды.

В частности, в вакууме ε = ε0, μ = μ0, ε0 = 107/4πс2 Ф/м - электрическая постоянная, μ= 4·10-7 Гн/м - магнитная постоянная, с = 2,9979·108 м/с - скорость света в вакууме.

Используя последнее соотношение из (1.1), можно вывести формулу:

,                                                            (1.2)

где R - электрическое сопротивление цилиндрического проводника длиной l с площадью поперечного сечения S.

Наличие связи (1.1) позволяет для характеристики электромагнитного поля в воздухе, а также в вакууме и вообще в любой изотропной среде использовать вместо четырех величин только две: либо  или  (обычно используют ), либо  или  (используют как ту, так и другую величину).

Определить электромагнитное поле в некоторой области пространства, например, в воздухе, значит определить векторы  и  или  в каждый момент времени в каждой точке пространства.

Перечисленные выше векторные величины являются силовыми характеристиками электромагнитного поля. Так,  является отношением силы, действующей на положительный точечный заряд и направленной вдоль скорости движения, если заряд движется, к заряду. В свою очередь,  есть отношение силы, действующей на положительный точечный заряд и направленной перпендикулярно скорости движения, к произведению заряда на модуль скорости движения.

В Международной системе единиц (СИ) величины, связанные с электромагнитным полем, именуются электрическими. В качестве основной электрической величины выбрана сила электрического тока, с единицей измерения ампер, размерность которой (I) входит во все производные единицы измерения электрических величин.

В табл. 1.1 приведены основные величины, характеризующие электромагнитное поле и единицы их измерения.

Величины, характеризующие электромагнитное поле

Величина

Единица измерения

Наименование

Обозначение

Размерность

Напряженность электрического поля

Вольт на метр

В/м

LMT-3I-1

Электрическая индукция

Кулон на квадратный метр

Кл/м2

L-2TI

Напряженность магнитного поля

Ампер на метр

А/м

L-1I

Магнитная индукция

Тесла

Тл

MT-2I-1

Плотность тока

Ампер на квадратный метр

А/м2

IM-2

Сила тока

Ампер

А

I

Электрический заряд

Кулон

Кл

TI

Электрическое напряжение

Вольт

В

L2MT-3I-1

Плотность потока энергии электромагнитного поля

Ватт на квадратный метр

Вт/м2

МТ-3

По временной зависимости величины, характеризующие электромагнитное поле, подразделяются на следующие основные виды:

1) постоянные (не зависящие от времени);

2) гармонические колебания;

3) произвольные периодические колебания;

4) импульсы;

5) шумы;

6) модулированные колебания.

В отличие, например, от акустических полей, которые представляют собой зависимость некоторой одной скалярной величины от времени, электромагнитное поле является более сложным объектом, так как описывается двумя векторными величинами и т.е. шестью скалярными величинами. Специфику описания временной зависимости электромагнитного поля можно продемонстрировать на примере наиболее распространенного вида колебаний - гармонического колебания. Это колебание описывается следующими математическими выражениями:

,

,

где  - амплитудные векторы напряженности электрического поля, зависящие только от пространственных координат и ортогональные друг другу; - амплитудные векторы напряженности магнитного поля, зависящие только от пространственных координат и ортогональные друг другу; - частота колебания. С частотой однозначно связаны такие величины как ω = 2f - круговая частота, Т = 1/- период колебания, λ = c/f - длина волны.

В случае гармонического колебания, напряженность электрического (магнитного) поля характеризуется частотой и двумя векторными величинами (шестью скалярными). Если один из векторов равен нулю, то напряженность электрического (магнитного) поля не меняет своей ориентации в пространстве, изменяясь во времени только по величине и меняя направление на противоположное при прохождении через нуль. В общем случае (оба вектора отличны от нуля), конец вектора  () описывает эллипс, а если ││=││ (││=││), то - окружность. При этом эллипс (окружность) расположен в плоскости, проходящей через векторы  () и ().

В случае произвольных периодических колебаний конец вектора () описывает в пространстве замкнутую кривую, форма которой может быть весьма сложной.

Постоянное электрическое поле часто называют электростатическим. Оно создается заряженными диэлектрическими или металлическими телами. Графически структуру электрического поля принято изображать при помощи силовых линий, к которым вектор напряженности электрического поля касателен в каждой точке. Каждая силовая линия начинается на положительном заряде и заканчивается на отрицательном или уходит в бесконечность. Густота силовых линий качественно характеризует модуль напряженности электрического поля. Наиболее простую структуру имеет электрическое поле неподвижного точечного положительного заряда. Если поместить точечный положительный заряд в начало декартовой системы координат, то вектор будет направлен вдоль радиуса-вектора  и его модуль будет убывать обратно пропорционально квадрату расстояния │. В этом случае силовые линии - лучи, выходящие из начала координат (рис. 1.1).

Более сложную структуру имеет система, состоящая из двух равных по величине и противоположных по знаку точечных зарядов (рис. 1.2).

Рис. 1.1

Рис. 1.2

Рис. 1.3

Рис. 1.4

Наконец, самую простую структуру имеет электрическое поле равномерно заряженной плоскости (рис. 1.3). Выше и ниже плоскости электрическое поле является однородным (напряженность электрического поля одинакова во всех точках), а вектор перпендикулярен заряженной плоскости.

Практически в любой реальной структуре постоянного электрического поля можно найти структурные элементы, изображенные на рис. 1.1 - 1.3. Например, имеется положительно заряженное металлическое тело (рис. 1.4), и на некотором расстоянии от него - заземленное металлическое тело. Так как одноименные заряды отталкиваются, а разноименные притягиваются, то положительные заряды уйдут с заземленного тела в землю, и оно зарядится отрицательно. Поэтому в целом структура электрического поля будет похожа на структуру, изображенную на рис. 1.2. Вблизи плоских участков обоих тел электрическое поле будет по структуре близко к однородному полю (рис. 1.3), а вблизи острых кромок похоже на электрическое поле, изображенное на рис. 1.1. Подобным образом можно проанализировать любую систему заряженных тел.

Постоянное магнитное поле создается постоянным магнитом или проводниками с постоянным током. Графически структуру постоянного магнитного поля изображают при помощи силовых линий магнитного поля - линий, к которым вектор напряженности магнитного поля касателен в каждой точке.

Простейшим элементом, создающим магнитное поле, является бесконечно тонкий прямолинейный провод с постоянным током. В этом случае силовые линии магнитного поля - окружности, центры которых расположены на проводе с током, а сами окружности лежат в плоскостях, перпендикулярных проводу.

При наличии временной зависимости электрическое и магнитное поля связаны друг с другом и образуют единое целое - электромагнитное поле. В случае гармонических колебаний, пространственная структура электромагнитного поля зависит не только от распределения зарядов и токов на некотором проводящем теле, но и от частоты, а точнее от соотношения между длиной волны λ размерами источника Lu ирасстоянием от источника до точки наблюдения R:

1) Lu << λ; R << λ. Размеры источника и расстояние от источника до точки наблюдения малы по сравнению с длиной волны. В этом случае электрическое и магнитное поля практически не зависят друг от друга. Электрическое поле возбуждается только зарядами, а магнитное - только токами. При этом в каждый момент времени в каждой точке пространства, удовлетворяющей условию R << λ, мгновенное значение напряженности электрического (магнитного) поля соответствует мгновенному значению распределения зарядов (токов). По величине и направлению эти значения такие же, как при постоянном распределении зарядов (токов). При выполнении этого условия точка наблюдения находится в ближней зоне. В рассматриваемом случае нет электромагнитного излучения, а есть независимые друг от друга квазистатические переменные электрическое и магнитное поля. Поэтому объект, находящийся в таком электромагнитном поле, подвергается как бы отдельно воздействию электрического и магнитного полей. Так как физические механизмы взаимодействия электрического и магнитного полей с помещенным в них телом разные, предельно допустимые уровни устанавливаются отдельно для электрического и магнитного полей.

2) Lu << λ; R >> λПри выполнении условия R >> λ говорят, что точка наблюдения находится в дальней зоне. В этой зоне независимо от вида источника (переменные заряды или токи) существует сформировавшееся электромагнитное поле в виде сферической волны, которая распространяется во все стороны от источника электромагнитного поля. В такой волне векторы напряженности электрического и магнитного полей перпендикулярны друг другу и направлению распространения волны, а их модули связаны соотношением

,                                                               (1.3)

где - волновое сопротивление свободного пространства.

При этом модули напряженности электрического и магнитного полей убывают обратно пропорционально расстоянию от источника до точки наблюдения.

Распространение электромагнитной волны сопровождается переносом энергии электромагнитного поля в направлении распространения волны. Плотность потока энергии электромагнитного поля ропределяется по формуле

.                                               (1.4)

3) Lu >> λКак правило, источники излучения, для которых выполняется это условие, являются антеннами радиолокаторов или систем дальней связи. В отличие от предыдущего случая, кроме ближней и дальней зоны, есть еще промежуточная зона, в которой электромагнитная волна распространяется по законам геометрической оптики и в случае зеркальной антенны или многоэлементной антенной решетки имеет вид прожекторного луча.

Независимо от того, в какой зоне находится объект, подвергаемый воздействию электромагнитного поля, характер воздействия, главным образом, зависит от соотношения между длиной волны λ и размером объекта LoЕсли Lo << λ, то даже, если объект расположен в промежуточной или дальней зоне, электрическое и магнитное поля воздействуют на объект, возбуждая в нем токи, как независимо существующие поля, которые взаимодействуют сразу со всем объектом. В этом случае, например, для оценки тепла, выделяемого в объекте, надо найти токи, возбуждаемые электрическим и магнитным полями отдельно, а затем по суммарному току рассчитать выделяемое в объекте тепло.

Если Lo >> λ, то объект находится в поле электромагнитной волны, как в едином целом. В этом случае оценивается предельное значение тепла, которое можно выделить в объекте, умножив плотность потока энергии электромагнитного поля на площадь максимального сечения объекта в плоскости, перпендикулярной направлению распространения электромагнитной волны.

Как уже отмечалось выше, напряженность электрического (магнитного) поля является векторной функцией времени и координат, и измерение ее в каждый момент времени и в каждой точке пространства не реально, да в этом и нет необходимости. Поэтому, когда говорят об измерении напряженности переменного электрического (магнитного) поля, то подразумевают, что речь идет об измерении одного или нескольких скалярных параметров напряженности электрического (магнитного) поля или электромагнитной волны.

Для характеристики периодических электромагнитных колебаний используют следующие параметры:

1) среднее квадратическое значение напряженности электрического поля 

,                                                   (1.5)

где Т - период колебаний;

2) среднее квадратическое значение проекции напряженности электрического поля на заданное направление

,                                                  (1.6)

где - единичный вектор, определяющий заданное направление;

3) средние квадратические значения напряженности магнитного поля и магнитной индукции. Они определяются аналогичным образом. Соответствующие формулы получаются в результате замены Е на Н или В;

4) средняя плотность потока энергии электромагнитного поля в плоской волне

                                                                (1.7)


2. Механизмы воздействия электромагнитного поля на человека.

Любое вещество, в том числе и то, из которого состоит человек, является смесью частиц, имеющих положительные и отрицательные заряды. Важнейшей электромагнитной характеристикой свойств вещества является его электропроводность. В зависимости от степени электропроводности, вещества делятся на диэлектрики (σ → 0) и проводники (σ → ∞). В результате резкого различия диэлектриков и проводников, их поведение в электромагнитных полях оказывается неодинаковым. Однако большинство веществ по параметру электропроводности занимают промежуточное положение между идеальными диэлектриками и идеальными проводниками. Вещества типа земли и воды ведут себя, в зависимости от характеристик электромагнитного поля, то как проводники, то как диэлектрики. Если зависимость электромагнитного поля от времени является гармонической, то существует мера оценки свойств вещества на частоте ω.

Если , то вещество характеризуется как диэлектрик, если , то как проводник. Следовательно, в рассматриваемом нами диапазоне частот свойства вещества могут меняться весьма значительно. Однако имеется общая тенденция превращения вещества в диэлектрик с ростом частоты.

Исходя из того, что при отсутствии внешнего электростатического поля тело человека электрически нейтрально (суммарный заряд равен нулю), при его воздействии на человека можно выделить три ситуации:

1) тело человека находится в поле и изолировано от остальных тел. В этом случае подвижные заряженные частицы вещества расположатся как у проводника на поверхности тела, а связанные поляризуются, как у диэлектрика;

2) тело человека заземлено. Тогда подвижные заряженные частицы, определяющие проводимость тела человека, перетекут на землю и тело приобретет заряд, который можно обнаружить, изолировав тело от земли и экранировав его от электрического поля;

3) тело человека является частью электрической цепи, в которой ток проводимости (перенос заряженных частиц) вызывается сторонней напряженностью электрического поля.

Действие постоянного магнитного поля на вещество, являющееся проводником, по которому течет электрический ток (движутся заряженные частицы), связано с магнитной силой, действующей под прямым углом к направлению движения. Общее движение представляет собой движение по цилиндрической спирали.

Взаимодействие внешних электромагнитных полей с биологическими объектами осуществляется путем наведения внутренних полей и электрических токов, величина и распределение которых в теле человека зависят от целого ряда параметров, таких как размер, форма, анатомическое строение тела, электрические и магнитные свойства тканей (диэлектрическая и магнитная проницаемости и удельная проводимость), ориентация тела относительно векторов электрического и магнитного полей, а также от характеристик ЭМП (частота, интенсивность, модуляция и др.).

Согласно современным представлениям, по механизму действия ЭМП сверхнизкочастотного и низкочастотного диапазонов (вплоть до 10 - 30 кГц), основную опасность для организма представляет влияние наведенного электрического тока на возбудимые структуры (нервную, мышечную ткань). Параметром, определяющим степень воздействия, является плотность наведенного в теле вихревого тока. При этом, для электрических полей (ЭП) рассматриваемого диапазона частот характерно слабое проникновение в тело человека, для магнитных полей (МП) - организм практически прозрачен.

Плотности наведенного тока (j) могут быть рассчитаны по формулам:

для ЭП j = k · f ·E, где - частота, Е - напряженность ЭП, k - коэффициент, отличающийся для различных тканей;

для МП - j = p  · R · σ · f · B, где: В - магнитная индукция, σ - проводимость ткани.

Поглощение энергии ЭМП в тканях определяется главным образом двумя процессами: колебанием свободных зарядов и колебанием дипольных моментов с частотой воздействующего поля. Первый эффект приводит к возникновению токов проводимости и связанным с электрическим сопротивлением среды потерям энергии (потери ионной проводимости), тогда как второй процесс приводит к потерям энергии за счет трения дипольных молекул в вязкой среде (диэлектрические потери). На низких частотах основной вклад в поглощение энергии ЭМИ вносят потери, связанные с ионной проводимостью. Ионная проводимость возрастает с ростом частоты поля до 10- 107 Гц в связи с уменьшением емкостного сопротивления мембран и со все большим участием внутриклеточной среды в общей проводимости, что ведет к увеличению поглощения энергии. При дальнейшем увеличении частоты ионная проводимость среды остается практически постоянной, а поглощение энергии продолжает увеличиваться за счет потерь на вращение дипольных молекул среды, главным образом, молекул воды и белков.

Первичные механизмы действия поглощенной энергии на микромолекулярном, субклеточном, клеточном уровнях изучены слабо. Одним из проявлений взаимодействия ЭМП с веществом вообще и с биологическими структурами, в частности, является их нагрев. Однако доказано, что биологические эффекты влияния ЭМП могут проявляться не только при действии сравнительно высоких интенсивностей излучений, вызывающих общий нагрев тканей, но и при так называемых «нетепловых» уровнях, когда общего повышения температуры не наблюдается. Возможно, при любых интенсивностях воздействия поглощение энергии ЭМП в тканях приводит к тепловыделению, однако распределение тепла может иметь неравномерный характер и приводить к возникновению внутренних «горячих точек» при интенсивности ЭМИ на порядок ниже интегрального теплового порога. Имеются данные о влиянии ЭМИ на клеточные мембраны, структуру некоторых белков, электрическую активность нейронов. Отмеченные эффекты не всегда могли быть интерпретированы как чисто тепловые. То есть принципиальная возможность неоднородного нагрева в мелкодисперсных биологических системах не вызывает сомнения, но вопрос о его количественной оценке остается открытым и не теряет своего значения.

В последнее десятилетие получила дальнейшее развитие информационная теория воздействия ЭМИ, основанная на концепции взаимодействия внешних полей с внутренними полями организма.


3. Гигиеническое нормирование электромагнитных полей в окружающей среде.

3.1. Принципы гигиенического нормирования воздействия ЭМП в России и за рубежом.

В основе гигиенических норм и правил внепроизводственных воздействий ЭМП, как и других факторов химической и физической природы, в России заложен принцип, в соответствии с которым безопасным для человека является предельно допустимый уровень (ПДУ) ЭМП. ПДУ - уровень воздействия фактора, который не должен вызывать заболеваний или отклонений в состоянии здоровья в настоящее время или в отдаленные сроки жизни настоящего и последующих поколений.

Гигиенические нормативы ЭМП в России разрабатываются, как правило, на основании комплексных гигиенических, клинико-физиологических, эпидемиологических и экспериментальных исследований. Гигиенические исследования ставят своей целью определение интенсивностных и временных параметров ЭМП в реальных условиях; клинико-физиологические исследования направлены на выявление нарушений в состоянии здоровья и физиологических функций людей, подвергающихся такого рода воздействиям; эпидемиологические - на выявление отдаленных последствий воздействия фактора; экспериментальные - на изучение особенностей и характера биологического действия ЭМП.

Основной вклад в обоснование гигиенических нормативов ЭМП вносят экспериментальные исследования.

Безопасным для человека считается такое воздействие ЭМП, которое не вызывает нарушения гомеостаза (включая репродуктивную функцию), качественной перестройки и любых количественных изменений жизненных процессов, которые выходят за пределы физиологической нормы, соответствующей конкретным условиям жизнедеятельности.

Принятая в России методология гигиенического нормирования, базирующаяся на представлениях о наличии порога вредного действия факторов окружающей среды, была использована и при обосновании допустимых уровней ЭМП.

Порог вредного действия - это такое воздействие ЭМП, при котором в организме возникают изменения, характеризующиеся:

  1.  качественной перестройкой жизненных процессов;
  2.  любыми количественными изменениями жизненных процессов, которые выходят за пределы физиологической нормы, соответствующей конкретным условиям жизнедеятельности, и обусловливают снижение способности организма к осуществлению нормальных компенсаторных возможностей по уравновешиванию неблагоприятного действия других факторов окружающей среды или необычных психофизиологических состояний;
  3.  развитием явлений суммирования предшествующих эффектов воздействия, имеющих характер кумулятивных и приводящих при продолжительном воздействии к развитию изменений жизненных процессов, выходящих за пределы допустимых отклонений.

По-видимому, порог вредного действия ЭМП лежит на границе, разделяющей зоны активной адаптации и патологических нарушений. Однако на практике, в процессе проведения экспериментальных исследований, установление порога вредного действия встречает ряд трудноразрешимых задач, зависящих от адекватности и чувствительности используемых методов, от вида и размера тела лабораторных животных, от качества метрологического обеспечения, от квалификации экспериментатора и множества других обстоятельств.

Большую сложность представляет собой экстраполяция результатов эксперимента с животных на человека, что обусловлено в значительной мере различиями в размерах тела и связанными с этим различиями в максимумах поглощения энергии ЭМП.

Наряду с вопросами экстраполяции экспериментальных данных при переходе от порогов вредного действия к допустимым уровням важным является и установление коэффициента гигиенического запаса - для повышения надежности гигиенических нормативов.

При разработке международных нормативных документов, регламентирующих ПДУ ЭМП различных частотных диапазонов, основным источником репрезентативных данных являются опубликованные результаты различных исследований по изучению биологического действия ЭМП. При этом серьезное внимание уделяется критическому анализу имеющейся научной литературы. Согласно критериям Международной комиссии по защите от неионизирующих излучений (ICNIRP) литература для анализа (обзора, рассмотрения) должна быть опубликована в определенных научных журналах.

В европейских и международных стандартах дается краткое описание принципов нормирования. В основе нормирования, принятого в зарубежных странах, лежат следующие положения. Под действием электромагнитного поля, в котором находится человек, в его теле возбуждается электрический ток. Полагают, что на частотах до 1 МГц этот ток оказывает непосредственное вредное воздействие на мышечные ткани, нервную систему и другие органы человека. По результатам медико-биологических исследований устанавливается предельно допустимая плотность тока в теле человека (The basic restrictions for currentdensities in the body). Сведения о том, как это конкретно делается, в доступной литературе отсутствуют. Полученные значения предельно допустимой плотности тока используются для расчета ПДУ параметров электромагнитного поля, которые подлежат контролю при обеспечении электромагнитной безопасности. На низких частотах (в частности, на частотах ниже 1 МГц) такими параметрами являются напряженности электрического и магнитного полей. Расчет ПДУ производится следующим образом. Решается задача о возбуждении тока в модели тела человека, помещенной во внешнее электрическое (магнитное) поле. В результате решения этой задачи находится связь между плотностью тока в теле человека и напряженностью внешнего электрического (магнитного) поля. Используя эту связь, по известному значению предельно допустимой плотности тока устанавливают предельно допустимые значения напряженности электрического (магнитного) поля. Следует особо подчеркнуть, что ПДУ устанавливаются для параметров именно внешнего электромагнитного поля, т.е. электромагнитного поля, которое существует в среде при отсутствии тела человека. Связь между ПДУ и предельно допустимой плотностью тока может быть установлена не только теоретически, но и экспериментально, если поместить манекен (фантом, модель человека), имеющий необходимые электрические параметры, во внешнее электрическое (магнитное) поле и измерять в разных точках манекена плотность тока.

На частотах выше 1 МГц полагают, что вредное воздействие на организм оказывает не непосредственно протекающий ток, а тепло, выделяемое при протекании тока в теле человека, характеристикой которого является количество энергии dW, выделенное в массе тела dm за интервал времени dt. Так как приращение выделенной энергии dW за интервал времени dt является мощностью, то вводят понятие поглощенной удельной мощности (ПУМ) электромагнитной энергии в единице массы dm (Specific Absorption Rate - SAR).

.                                                  (1.8)

ПУМ выражается в единицах ватт на килограмм (Вт/кг).

ПУМ может быть выражена через приращение температуры тела dT за время dt, если известна его теплоемкость ci:

 │= 0                                                     (1.9)

Для электромагнитных величин

,                                                (1.10)

где ρ - плотность ткани тела объема dV, кг/м3;

Ei - среднее квадратическое значение напряженности электрического поля в ткани (В/м);

σ - удельная проводимость ткани тела См/м.

По результатам медико-биологических исследований устанавливаются предельные значения ПУМ. Далее на основе установленных значений ПУМ проводят расчет ПДУ параметров внешнего электромагнитного поля. Для этого, как и в случае частот ниже 1 МГц, решается задача о возбуждении тока в модели человека, помещенной во внешнее электрическое (магнитное) поле на частотах до 10 МГц или в поле плоской волны на частотах выше 10 МГц. В результате решения этой задачи находится распределение ПУМ в модели при заданных параметрах внешнего электромагнитного поля. После этого устанавливают предельно допустимые значения напряженности внешнего электрического (магнитного) поля или параметров падающей плоской электромагнитной волны. При этом на частотах выше 10 МГц может использоваться любой из параметров плоской электромагнитной волны: напряженность электрического поля, напряженность магнитного поля, плотность потока энергии.

Однако как в рекомендациях ICNIRP, так и в нормативных документах ряда зарубежных стран устанавливаются не значения ПДУ, а лишь значения так называемых «контрольных (контролируемых) уровней» (reference levels), которые, по сути, не являются нормативными в понимании, принятом у нас в стране.

Все это относится к ПДУ, которые считаются гигиеническими, так как они устанавливаются исходя из вредного воздействия электромагнитного поля на человека. Относительно недавно появились ПДУ параметров электромагнитного поля, возбуждаемого видеодисплейными терминалами (ВДТ), которые также используются при контроле для обеспечения электромагнитной безопасности при работе с ВДТ, но устанавливаются по-другому. Такие ПДУ можно назвать техническими, и устанавливались они следующим образом. Для серии ВДТ были произведены измерения параметров электромагнитного поля, найдены средние значения этих параметров и эти средние значения либо сами, либо умноженные на коэффициент, меньший единицы, были взяты в качестве ПДУ. Как правило, полученные таким образом технические ПДУ более чем на порядок меньше гигиенических ПДУ. Такой подход для нормирования параметров электромагнитного поля, возбуждаемого ВДТ, получил широкое распространение, хотя эти стандарты являются стандартами на технические параметры, а не гигиеническими.

С недавнего времени получил распространение и еще один принцип гигиенического нормирования ЭМП, в первую очередь МП промышленной частоты - предупредительный принцип (precautionary principle). Впервые предупредительный принцип в отношении МП ПЧ был сформулирован в 1996 г. в Швеции. Национальный институт защиты от излучений, Национальный совет по электробезопасности, Национальный совет по здоровью и безопасности населения, Национальный совет по здоровью и социальному обеспечению, Национальный совет по строительству и планированию разработали совместный документ ADI 478 о степени биологического действия МП ПЧ. В октябре 2001 г. он нашел отражение в информационном сообщении ВОЗ «Electromagnetic fields and public health.

Extremely low frequency fields and cancer», предупреждающем о возможной канцерогенности крайне низкоинтенсивных МП ПЧ и рекомендующем всеми доступными средствами ограничивать воздействие МП ПЧ на организм человека.

4. Основные нормативные документы (НД) по санитарно-эпидемиологическому нормированию воздействий электромагнитных полей на население.

Система НД по санитарно-эпидемиологическому нормированию внепроизводственных воздействий ЭМП включает в себя нормативы, устанавливающие предельно допустимые значения параметров электромагнитных воздействий на человека, принципы и методы контроля и обеспечения защиты. В России эта система включает в себя нормативные документы, утверждаемые Главным государственным санитарным врачом Российской Федерации по рекомендации Федеральной комиссии по государственному санитарно-эпидемиологическому нормированию при Министерстве здравоохранения Российской Федерации: санитарно-эпидемиологические правила и нормативы (СанПиН), гигиенические нормативы (ГН), предельно допустимые уровни (ПДУ), временные допустимые уровни (ВДУ). НД по электромагнитной безопасности населения приведены в списке литературы.

4.1. Санитарно-эпидемиологические нормативы для электромагнитных полей.

Санитарно-эпидемиологические нормативы внепроизводственных воздействий ЭМП разработаны в нашей стране для отдельных диапазонов частот: электростатического поля, электрического и магнитного полей промышленной частоты (50 Гц); электромагнитного поля радиочастотного диапазона (30 кГц - 300 ГГц). Имеются также самостоятельные гигиенические нормативы для ЭМП от отдельных видов бытового оборудования: индукционных печей с диапазоном частот 20 - 22 кГц; СВЧ-печей с диапазоном частот 0,3 - 37,5 ГГц; ПЭВМ с диапазоном частот 5 Гц - 400 кГц и электростатическим потенциалом; средств сухопутной подвижной радиосвязи, включая сотовую связь с диапазоном частот 27 - 2400 МГц.

4.2. Санитарно-эпидемиологические нормативы для электрического и магнитного полей промышленной частоты (50 Гц)

При санитарно-эпидемиологическом нормировании внепроизводственных воздействий электрических и магнитных полей промышленной частоты (50 Гц) определяется напряженность ЭП и напряженность МП (магнитная индукция).

Нормирование ЭП частотой 50 Гц осуществляется в соответствии с требованиями СНиП 2971-84 «Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты»: МСанПиН 001-96 и СанПиН 2.1.2.1002-2000.

Причем, до недавнего времени регламентировались лишь уровни ЭП частоты 50 Гц, создаваемые воздушными линиями электропередачи напряжением 330 кВ и выше. При этом установленные ПДУ дифференцировались в зависимости от возможного времени пребывания населения - от 0,5 кВ/м внутри жилых зданий и сооружений и 1 кВ/м - на территории жилой застройки и до 20 кВ/м - в труднодоступной местности (табл. 1.3).

Таблица 1.3

Гигиенические нормативы воздействия электрических и магнитных полей промышленной частоты (50 Гц) на население России

Вид поля

Гигиенические нормативы

Нормативный документ

Примечания

ЭП 50 Гц

ПДУ напряженности ЭП 50 Гц, создаваемого воздушными линиями (ВЛ) электропередачи переменного тока, в зависимости от условий воздействия составляют:

0,5 кВ/м - внутри жилых зданий;

1 кВ/м - на территории зоны жилой застройки;

5 кВ/м - в населенной местности вне зоны жилой застройки (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа, в пределах поселковой черты и сельских населенных пунктов), а также на территории огородов и садов;

10 кВ/м - на участках пересечения ВЛ с автомобильными дорогами I - IV категорий

СНиП 2971-84 «Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты»

Измерения напряженности ЭП следует проводить на высоте 1,8 м от поверхности пола - (земли); Регламентируются границы санитарно-защитной зоны (СЗЗ) вдоль трассы ВЛ (территория, на которой напряженность ЭП превышает 1 кВ/м);

При напряженности электрического поля выше 1 кВ/м должны быть приняты меры по исключению воздействия на человека ощутимых электрических разрядов и токов стекания

ЭП 50 Гц

15 кВ/м - в ненаселенной местности (незастроенные местности, хотя и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья)

20 кВ/м - в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально огороженных, т.е. недоступных для населения

ЭП 50 Гц

Допустимые уровни напряженности ЭП 50 Гц вне зависимости от вида источника в жилых помещениях не должны превышать 0,5 кВ/м

СанПиН 2.1.2.1002-2000 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям»

Измерения следует проводить на расстоянии 0,2 м от стен и окон на высоте 0,5 - 1,8 м от пола при полностью отключенных изделиях бытовой техники, включая устройства местного и общего освещения

Допустимые уровни напряженности ЭП 50 Гц, создаваемого ВЛ электропередачи переменного тока и другими объектами на территории жилой застройки, не должны превышать 1 кВ/м

Измерения следует проводить на высоте 1,8 м от поверхности земли

ЭП 50 Гц

Допустимые уровни напряженности ЭП 50 Гц, создаваемые товарами народного потребления, не должны превышать 0,5 кВ/м

МСанПиН 001-96 «Санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях»

Измерения следует проводить на расстоянии 0,5 м от поверхности изделия

МП 50 Гц

Допустимые уровни индукции МП 50 Гц в жилых помещениях вне зависимости от вида источника не должны превышать 10 мкТл*

Допустимые уровни индукции МП 50 Гц, создаваемого ВЛ электропередачи переменного тока и другими объектами на территории жилой застройки, не должны превышать 50 мкТл*

СанПиН

2.1.2.1002-2000

Измерения следует проводить на расстоянии от 0,2 м от стен и окон и на высоте 0,5 - 1,5 м от пола при полностью отключенных изделиях бытовой техники и освещении. Измерения следует проводить на высоте 1,8 м от поверхности земли

* Приняты в качестве временного норматива.

В МСанПиН 001-96 были установлены нормы на ЭП частоты 50 Гц, создаваемые лишь товарами народного потребления. В разработанном недавно СанПиН 2.1.2.1002-2000 устанавливаемые ПДУ распространяются на ЭП в любых типах жилых помещений и на территориях жилой застройки, составляя 0,5 и 1 кВ/м, соответственно, вне зависимости от источника ЭП.

До недавнего времени в Российской Федерации отсутствовали гигиенические нормы на МП частоты 50 Гц. В настоящее время имеется временный норматив, указанный в СанПиН 2.1.2.1002-2000.

Предложены два нормативных значения для МП: внутри жилых помещений и на территории жилой застройки, которые составляют, соответственно, 10 и 50 мкТл. В настоящее время ведется работа по созданию научно обоснованных ПДУ МП для населения.

Установленные в России ПДУ для электрических и магнитных полей промышленной частоты значительно ниже предложенных Международными рекомендациями ICNIRP значений контролируемых уровней, которые составляют 5 кВ/м и 100 мкТл (80 А/м) соответственно.

Ряд европейских (и не только европейских) государств в настоящее время придерживаются рекомендаций, предложенных ICNIRP. Это Австрия, Германия, Чехия, Австралия и Новая Зеландия, Испания, Италия и др.

В то же время в ряде стран или регионов, исходя из «предупредительного принципа», были предложены более жесткие ограничения уровней ЭП и МП ПЧ. Основанием для этого послужили полученные в последние годы данные о возможности неблагоприятного (вплоть до канцерогенного) влияния на здоровье человека слабых МП ПЧ.

Так, в Италии в провинции Венеции в 1998 г. был принят региональный закон, устанавливающий в местах проживания населения предельный уровень ЭП ПЧ 0,5 кВ/м, а МП ПЧ 0,2 мТл. 23 декабря 1999 г. Федеральный совет Швейцарии принял декрет по защите населения от неионизирующих излучений, согласно которому установлено два типа ограничения уровней ЭМП ПЧ. Как базовые приняты «контролируемые уровни» в соответствии с ICNIRP. Кроме того, принимаются более жесткие ограничения для различных типов электроустановок, включающих в себя воздушные и подземные линии электропередачи напряжением более 1 кВ, трансформаторные подстанции, распределительные подстанции, распределительные устройства, железнодорожный транспорт и трамвай. Согласно этим ограничениям предельно допустимый уровень МП ПЧ в жилых зданиях, детских учреждениях, больницах и т.д. составляет 1 мкТл.

4.3. Санитарно-эпидемиологические нормативы для электромагнитного поля радиочастотного диапазона

Основными документами, регламентирующими внепроизводственные воздействия ЭМП в диапазоне частот 30 кГц - 300 ГГц, являются СанПиН 2.1.8/2.2.4.1383-03 «Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов», МСанПиН 001-96 и СанПиН 2.1.2.1002-2000.

Дополнительно регламентируются уровни ЭМП, генерируемые отдельными источниками:

  1.  индукционными печами - в диапазоне 20 - 22 кГц (в соответствии с СН 2550-82 «Предельно допустимые нормы напряженности электромагнитного поля, создаваемого индукционными бытовыми печами, работающими на частоте 20 - 22 кГц»;
  2.  СВЧ-печами - в диапазоне частот 0,3 - 37,7 ГГц (в соответствии с СН 2666-83 «Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами»);
  3.  персональными ЭВМ - в диапазоне частот 5 Гц - 400 кГц (в соответствии с СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы»);
  4.  средствами сухопутной подвижной радиосвязи в диапазоне частот 27 - 2400 МГц (в соответствии с СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи»).

Согласно требованиям СанПиН 2.1.8/2.2.4.1383-03 устанавливаются ПДУ напряженности электрического поля для диапазона частот 30 кГц - 300 МГц и ПДУ плотности потока энергии (ППЭ) для диапазона частот 300 МГц - 300 ГГц. ПДУ различаются для разных частотных диапазонов и составляют: 25 В/м - для диапазона 30 кГц - 300 кГц; 15 В/м - для диапазона 0,3 - 3,0 МГц; 10 В/м - для диапазона 3 - 30 МГц, 3 В/м - для диапазона 30 - 300 МГц и 10 мкВт/см2 - для диапазона 300 МГц - 300 ГГц (табл. 1.4). В диапазоне частот 300 МГц - 300 ГГц для случаев облучения от антенн, работающих в режиме кругового обзора и сканирования, ПДУ составляет 25 мкВт/см2. Дополнительно СанПиН 2.1.8/2.2.4.1383-03 и СанПиН 2.1.2.1002-2000 устанавливают нормы на интенсивности ЭМП, создаваемых радиолокационными станциями специального назначения; принципы определения ПДУ при облучении от нескольких источников ЭМП; требования к источникам ЭМП радиочастотного диапазона и требования к размещению передающих радиотехнических объектов (условия согласования, определения границ санитарно-защитных зон и зон ограничения застройки).

Национальные стандарты зарубежных стран и международные рекомендации устанавливают в одних случаях единые значения ПДУ для персонала и населения (например, Германия), в других - дифференцированные (Канада, Великобритания, ICNIRP). Дифференцируемый подход применяется и для контролируемых уровней ЭМП (США, Австралия, CENELEC).

В международных рекомендациях ICNIRP и CENELEC, а также в разработанных недавно гигиенических нормах в Польше регламентированы максимальные уровни ЭМП.

Таблица 1.4

Гигиенические нормативы воздействия электромагнитных полей радиочастотного диапазона (ЭМП РЧ) на население России

Вид поля, диапазон частот

Гигиенические нормативы

Нормативный документ

Примечания

Электрическое и магнитное поле 20 кГц - 22 кГц

Епду = 500 В/м

Нпду = 4 А/м

СН 2550-82

Измерения следует проводить на расстоянии 0,3 м от корпуса печи

Электрическое поле 30 кГц - 300 МГц

Электромагнитное поле ³ 0,3 - 300 ГГц

Допустимые уровни ЭМП, создаваемые товарами народного потребления, в зависимости от диапазона частот составляют:

30 - 300 кГц - 25 В/м;

0,3 - 3 МГц - 15 В/м;

3 - 30 МГц - 10 В/м;

30 - 300 МГц - 3 В/м;

0,3 - 300 ГГц - 10 мкВт/см2;

0,3 - 37,5 ГГц - 10 мкВт/см2

МСанПиН 001-96, СН 2666-83

Измерения следует проводить на расстоянии 0,5 м от поверхности изделия

Измерения следует проводить на расстоянии 0,50 ± 0,05 м от поверхности печи при нагрузке 1 л воды

Электрическое поле 30 кГц - 300 МГц

Электромагнитное поле 0,3 - 300 ГГц

Предельно допустимые уровни ЭМП, создаваемые на территории жилой застройки и мест массового отдыха, в помещениях жилых, общественных и производственных зданий (внешнее излучение, вторичное излучение) в зависимости от диапазона частот составляют:

30 - 300 кГц - 25 В/м

0,3 - 3 МГц - 15 В/м

3 - 30 МГц - 10 В/м

30 - 300 МГц - 3 В/м для всех случаев облучения, кроме облучения от антенн РЛС специального назначения, работающих в диапазоне частот 150 - 300 МГц в режиме электронного сканирования луча, для которого ПДУ ЭМП на территории населенных мест, расположенных от источника в ближней зоне составляет 6 В/м, в дальней зоне - 19 В/м.

0,3 - 300 ГГц - 10 мкВт/смдля всех случаев облучения, кроме облучения от антенн, работающих в режиме кругового обзора и сканирования, для которого ПДУ - 25 мкВт/см2

СанПиН 2.1.8/ 2.2.4.1383-03

СанПиН 2.1.2.1002-2000 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям»

СанПиН

2.1.8/ 2.2.4.1383-03

СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям»

В жилых и общественных зданиях измерения уровней ЭМП от внешних источников и источников вторичного излучения следует проводить в центре помещений, у окон, батарей отопления и других металлических изделий, на балконах и др. при полностьюотключенных изделиях бытовой техники, создающей ЭМИ РЧ, на высоте от поверхности пола 0,5, 1 и 1,7 м.

На открытой территории измерения следует производить на высоте 2 м от поверхности земли, далее - 3, 6, 9 м и т.д. в зависимости от этажности застройки;

Гигиеническая оценка результатов измерений при одновременном облучении от нескольких источников ЭМИ РЧ должна проводиться с учетом условий, изложенных в СанПиН 2.1.8/ 2.2.4.1383-03

Как уже отмечалось ранее, в рекомендациях ICNIRP указываются не собственно ПДУ, а «основные ограничения» и «контролируемые уровни» (табл. 1.5). Причем «основные ограничения» уровней воздействия ЭМП на население определяются простым пересчетом из соответствующих величин для условий производственных воздействий с дополнительным коэффициентом гигиенического запаса, равным 5, а «контролируемые уровни» пересчитываются из этих значений, составляя в итоге величины в 2 - 5 раз меньшие, чем для условий производственных воздействий. Нормативы ICNIRP не относятся ни к стандартам, регламентирующим выпуск продукции, ни к руководствам по медицинскому оборудованию, ни к документам, устанавливающим требования к измерительной технике для определения контролируемых уровней или защитным мероприятиям.

Таблица 1.5

Контролируемые уровни производственных воздействий переменных электрических и магнитных полей (средние квадратические значения внешнего поля)

Диапазон частот, f

Напряженность электрического поля Е, В/м

Напряженность магнитного поля Н, А/м

Магнитная индукция В, мкТл

Эквивалентная плотность потока энергии Sэкв Вт/м

До 1 Гц

-

3,2·104

4·104

-

1 - 8 Гц

10000

3,2·104/f

4·104/f

-

8 - 25 Гц

10000

4000/f

5000/f

-

0,025 - 0,8 кГц

250/f

4/f

5/f

-

0,8 - 3 кГц

250/f

5

6,25

-

3 - 150 кГц

87

5

6,25

-

0,15 - 1 МГц

87

0,73/f

0,92/f

-

1 - 10 МГц

87/f

0,73/f

0,92/f

-

10 - 400 МГц

28

0,0037

0,092

2

400 - 2000 МГц

1,375f

0,0037f

0,0046f

f/200

2 - 300 ГГц

61

0,16

0,20

10

Как уже упоминалось выше, в России устанавливаются требования к параметрам ЭМП, создаваемых ВДТ, в соответствии с СанПиН 2.2.2/2.4.1340-03 (табл. 1.6).

Таблица 1.6

Контролируемые уровни воздействия электромагнитных полей, создаваемых видеодисплейными терминалами и персональными электронно-вычислительными машинами

Параметры ЭМП

Контролируемые уровни (ВДУ)

Нормативный документ

Напряженность электрического поля в диапазоне частот 5 Гц - 2 кГц

25 В/м

СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы»

Напряженность электрического поля в диапазоне частот 2 - 400 кГц

2,5 В/м

Плотность магнитного потока в диапазоне частот 5 Гц - 2 кГц

250 нТл

Плотность магнитного потока в диапазоне частот 2 - 400 кГц

25 нТл

Поверхностный электростатический потенциал при санитарно-эпидемиологической экспертизе

500 В

Напряженность электрического поля на рабочих местах

15 кВ/м

Согласно требованиям СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи», гигиеническое нормирование уровней ЭМП, создаваемых базовыми станциями и радиотелефонами, осуществляется в диапазоне частот 27 - 2400 МГц. ПДУ воздействия на население ЭМП от базовых станций не отличается от значений, указанных в СанПиН 2.1.8/2.2.4.1383-03 (табл. 1.7).

Таблица 1.7

Гигиенические нормативы воздействия электромагнитных полей, создаваемых средствами сухопутной подвижной радиосвязи, на население России

Диапазон частот

Гигиенические нормативы

Нормативный документ

Облучение от антенн базовых станций населения, проживающего на прилегающей селитебной территории

Облучение пользователей радиотелефонов

400 - 1200 МГц

10 мкВт/см2

100 мкВт/см2

МСанПиН 001-96 «Санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях»

27 - 30 МГц

10 В/м

45 В/м*

СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи»

30 - 300 МГц

3 В/м

15 В/м*

300 - 2400 МГц

10 мкВт/см2

100 мкВт/см2*

*Временные допустимые уровни (ВДУ) воздействия на человека ЭМП, создаваемых подвижными станциями сухопутной радиосвязи непосредственно у головы пользователя.

В европейском стандарте ENV 50166-2 ограничение уровней ЭМП от мобильных телефонов основано на концепции определения удельной поглощенной мощности в антропоморфном фантоме головы человека. ПДУ устанавливаются дифференцированно в зависимости от частоты, исходя из величины ПУМ, равной 2 Вт/кг, по величинам напряженности электрического и магнитного полей и ППЭ. Вследствие этого, ПДУ на частоте 450 МГц равен 225 мкВт/см(29,2 В/м и 0,08 А/м); на частоте 900 МГц - 450 мкВт/см2 (45,0 В/м и 0,11 А/м) и на частоте 1800 МГц - 900 мкВт/см2 (60,0 В/м и 0,15 А/м) соответственно. ПУМ для массы 10 г усредняется в течение шести минут.


5. Метрологическое обеспечение измерений параметров электромагнитного поля.

Согласно Закону Российской Федерации «Об обеспечении единства измерений» измерения, проводимые на соответствие требованиям нормативных документов по электромагнитной безопасности, относятся к сфере государственного метрологического контроля и надзора. Это означает, что используемые при этих измерениях средства измерений должны пройти испытания для целей утверждения типа, внесены в Государственный реестр, т.е. должны иметь сертификат об утверждении типа средств измерений и, наконец, должны быть поверены согласно утвержденной методике поверки на соответствующем рабочем эталоне. Рабочий эталон является источником эталонного поля или эталонным измерителем электрического или магнитного поля, который, в свою очередь, должен быть поверен в соответствии с одной из поверочных схем, приведенных в ГОСТ 8.030-91, ГОСТ 8.097-73, ГОСТ 8.560-94, ГОСТ Р 8.564-98, ГОСТ Р 8.574-2000. В перечисленных стандартах указаны следующие государственные эталоны.

Государственный первичный эталон единиц магнитной индукции постоянного поля, постоянного магнитного потока, отношения магнитной индукции переменного поля к силе тока и отношения магнитного потока к магнитной индукции;

Государственный специальный эталон единицы напряженности магнитного поля в диапазоне частот 0,01 - 30 МГц; Государственный первичный эталон единицы напряженности электрического поля в диапазоне частот от 0,0003 до 1000 МГц; Государственный специальный эталон единицы электрической емкости в диапазоне частот от 1 до 100 МГц;

Государственный первичный эталон единицы плотности потока энергии электромагнитного поля в диапазоне частот от 0,3 до 78 ГГц. Поверка измерителей напряженности электрического и магнитного полей (магнитной индукции) проводится методом прямых измерений напряженности эталонного электрического или магнитного поля (магнитной индукции), воспроизводимого в рабочем эталоне, либо непосредственным сличением с эталонными измерителями. В методике поверки конкретного измерителя указываются значения напряженности электрического или магнитного поля (магнитной индукции) и частоты, при которых должны проводиться эти измерения. Результат поверки считается положительным, если во всех поверяемых точках модуль разности между измеренным и установленным значениями - не более погрешности измерителя.


6.Измеритель параметров электрического и магнитного полей BE - МЕТР-АТ002.

Основные сведения об изделии.

.Измеритель параметров электрического и магнитного полей «ВЕ-МЕТР-АТ-002» МГФК.411173.004, заводской номер ___________

Дата изготовления _______________

Предприятие-изготовитель ООО «НТМ-Защита»

Сертификат RU-C.35.002.A № 5176 выдан 07 июля 1998 года Срок действия до 01 сентября 2008 года.

Основные технические характеристики.

Номинальные и фактические значения основных технических данных Измерителя приведены в таблице 2.

Таблица 2.

Наименование

Значение величины

1. ]. Пределы допускаемой основной относительной погрешности измерения среднеквадратических значений в полосе 1 или 2 напряженности электрического поля, возбуждаемого видеодисплейным терминалом, не более, %

20

L .2. Пределы допускаемой основной относительной погрешности измерения среднеквадратических значений в полосе ] или 2 плотности магнитного потока магнитного поля, возбуждаемого видеодисплейным терминалом, не более, %

20

2. Диапазон среднеквадратических значений напряженности электрического поля: в полосе 1, В/м в полосе 2, В/м Диапазон среднеквадратических значений плотности магнитного потока:

в полосе 1, мкТл; в полосе 2, нТл;

8—100

0.8—10.0

0.08—1.0

8—100

3. Время установления рабочего режима, не более, мня.

1

1. Описание и работа изделия

Назначение изделия:

Измеритель параметров электрического и магнитного полей ВЕ-метр-АТ-002 предназначен для контроля норм по электромагнитной безопасности видеодисплейных терминалов. Измеритель применяется при проведении комплексного санитарно-гигиенического обследования помещений и рабочих мест.

1.1 Условия эксплуатации измерителя.

1.2  Климатические условия:

(а) температура от +5 до +40 °С

(б) влажность до 90% при 25 °С

(в) давление от 84 до 107 кПа

Неоднородность поля не должна превышать погрешности измерения (20%) на расстояниях, равных максимальному размеру прибора (0,2 м).

Измерения проводятся на расстоянии от источника электрического (магнитного) поля, окружающих диэлектрических и металлических предметов не менее чем вдвое превышающем максимальный размер прибора (2x0,2 м = 0,4 м).

1.3. Технические характеристики измерителя:

  1.  диапазон частот от 5 Гц до 400 кГц;
  2.  полосы частот, в которых измеряется среднеквадратическое значение напряженности электрического поля и плотности магнитного потока: полоса 1 - от 5 Гц до 2000 Гц ; полоса 2 - от 2 кГц до 400 кГц;
  3.  диапазон среднеквадратических значений напряженности электрического поля: в полосе 1 - от 8 В/м до 100 В/м ; в полосе 2 - от 0,8 В/м до 10 В/м;
  4.  диапазон среднеквадратических значений плотности магнитного потока: в полосе 1 - от 0,08 мкТл до 1 мкТл; в полосе 2 - от 8 нТл до 100 нТл;
  5.  пределы допускаемой основной относительной погрешности измерителя в режиме измерения среднеквадратических значений в полосе 1 или 2 напряженности электрического поля, возбуждаемого видеодисплейным терминалом, ±20%;
  6.  пределы допускаемой основной относительной погрешности измерителя в режиме измерения среднеквадратических значений в полосе 1 или 2 плотности магнитного потока магнитного поля, возбуждаемого видеодисплейным терминалом, ±20%;

Время установления рабочего режима, не более 1 мин.

Время непрерывной работы измерителя без подзарядки аккумуляторной батареи, не менее 15 час.

Средняя наработка на отказ, не менее 1000 час.

Масса измерителя, не более 450 г.

Габариты измерителя, не более, мм 21 Ох 5 00x60

Потребляемая мощность 250 мВт.

Измеритель устойчив при воздействии климатических условий, соответствующих гр. 3 ГОСТ 22261. Измеритель устойчив при воздействии предельных условий транспортирования, соответствующих гр. 3 ГОСТ 22261

Комплект поставки.

В комплект поставки измерителя входят:

(а) Измеритель параметров электрического и магнитного полей - 1 шт,

(б) Блок подзарядки аккумуляторных - 1 шт.

(в) Сумка укладочная - 1 шт.

(г) Руководство по эксплуатации МГФК.411173.004РЭ - 1 шт.

(д) Паспорт МГФК.411173.004ПС - 1 шт.

(е) Штанга диэлектрическая МГФК.41 1 173.004.01 - 1 шт.

Устройство и работа.

Принцип действия измерителя параметров электрического и магнитного полей состоит в преобразовании колебаний электрического и магнитного полей в колебания электрического напряжения, частотной фильтрации и усиления этих колебаний с последующим их детектированием. Продетектированый сигнал поступает на аналогово-цифровой преобразователь, результирующие числовые значения величин зарегистрированных колебаний электрического и магнитного полей анализируются встроенным в измеритель микропроцессором, результат измерений индицируется на матричном жидкокристаллическом индикаторе.

Регистрация электрического и магнитного полей проводится одновременно во всей частотной полосе измерения. Зарегистрированный сигнал после предварительного усиления разделяется активными частотными фильтрами и в дальнейшем усиливается в независимых каналах регистрации. Прибор, таким образом, объединяет в одной конструкции два отдельных измерителя напряженности электрического поля, два отдельных измерителя плотности магнитного потока и микропроцессорный блок обработки и анализа результатов измерений.

Функциональная блок-схема измерителя приведена на рисунке 2. Составными частями измерителя являются:

Датчики электрического и магнитного полей дипольного типа. Оси чувствительности датчиков направлены горизонтально (при нормальном расположении измерителя) перпендикулярно продольной оси прибора. Это направление указано стилизованной стрелкой, изображенной на лицевой панели.

Предварительные усилители каналов регистрации электрического и магнитного полей представляют собой широкополосные операционные усилители с цепями коррекции частотной характеристики.

Полосовые усилители высоко- и низкочастотных каналов регистрации электрического и магнитного полей представляют собой активные RC-фильтры с регулируемыми коэффициентами усиления (последнее используется при калибровке приборов).

Окончательное формирование частотных характеристик каждого из сквозных каналов регистрации осуществляется цепями частотно-зависимой обратной связи операционных усилителей, использующихся для детектирования сигналов.

В качестве аналогово-цифрового преобразователя используется 8-ми входной мультиплексированый АЦП микроконтроллера семейства MCS-51 фирмы INTEL. Он включает в себя 256-элементную последовательно-параллельную резистивную матрицу, компаратор, конденсатор выборки и хранения, регистр последовательного приближения, триггер управления, регистр результатов сравнения и 8 регистров результатов аналогово-цифрового преобразования.

В качестве центрального процессора измерителя используется высокоинтегрированный 8-битовый микроконтроллер, основанный на архитектуре MCS-51. В измерителе этот процессор используется для установления режима измерений поля. По выбору пользователя может быть установлен режим непрерывного измерения поля и режим измерения полного вектора, включающий измерения трех компонент поля и последующее вычисление абсолютной величины вектора поля.

Пользовательский интерфейс обеспечивается в режиме "Меню" блоком управления микроконтроллером.

Рис. 2. Функциональная блок-схема измерителя "ВЕ-метр-АТ002"

На рисунке введены следующие обозначения:

  1.  Датчик-измеритель плотности магнитного потока.
  2.  Датчик-измеритель напряженности электрического поля.
  3.  Предварительный усилитель сигналов датчика плотности магнитного потока.
  4.  Предварительный усилитель сигналов датчика напряженности электрического поля.
  5.  Активный полосовой фильтр высоких частот (АПФВЧ) для сигналов датчика (1).
  6.  Активный полосовой фильтр низких частот (АПФНЧ) для сигналов датчика (1).
  7.  АПФВЧ для сигналов датчика напряженности электрического поля
  8.  АПФНЧ для сигналов датчика напряженности электрического поля
  9.  Канал детектирования высоких частот сигналов датчика плотности магнитного потока
  10.  Канал детектирования низких частот сигналов датчика плотности магнитного потока
  11.  Канал детектирования высоких частот сигналов датчика напряженности электрического поля.
  12.  Канал детектирования низких частот сигналов датчика напряженности электрического поля.
  13.  Аналогово-цифровой преобразователь
  14.  Процессор
  15.  Елок управления процессором
  16.  Жидкокристаллический алфавитно-цифровой дисплей матричного типа.
  17.  Звуковой сигнализатор.

Как пользовательское меню, так и окончательные результаты регистрации, индицируются на жидкокристаллическом строчном видиодисплее, расположенном на передней панели прибора.

Питание измерителя.

Питание прибора осуществляется от аккумуляторной батареи, состоящей из 4-х аккумуляторов типа GP 85 ААК. Батарея обеспечивает питание блока аналоговых усилителей детекторов двуполярным напряжением (со средней точкой) и питание цифровой части однополярным напряжением. Суммарное напряжение аккумуляторной батареи контролируется микропроцессором, который при обнаружении падения напряжения ниже критического уровня выдает на дисплей сообщение о разряде батареи - в левом нижнем углу жидкокристаллического индикатора результатов высвечивается символ «Р». После этого прибор можно эксплуатировать не более 2-х часов. В течение этого срока следует прекратить измерения и поставить прибор на зарядку.

Для зарядки аккумуляторной батареи питания следует кнопкой «Питание» выключить прибор. Затем штекер зарядного устройства вставить в соответствующее гнездо (см. рнс2) прибора, а само зарядное устройство - в розетку сети переменного тока 50 Гц. Время зарядки - 10 ч.

Конструкция измерителя.

Внешний вид измерителя представлен на рисунке 3.

Измеритель выполнен в виде портативного прибора, объединяющего в одном корпусе датчики-измерители плотности магнитного потока и напряженности электрического поля, блок полосовых (НЧ и ВЧ) усилителей-детекторов, блок цифровой обработки результатов регистрации, блок управления и индикации, и блок питания. Корпус прибора выполнен из синтетического материала с низким уровнем диэлектрических потерь.

Для удобства пользователя все управляющие органы измерителя (выключатель питания, кнопки выбора режима и запуска измерений) вынесены на переднюю панель прибора и объединены в один блок управления.

В боковой части прибора (слева под индикаторной панелью) расположено гнездо подключения зарядного устройства.

Рис. 3. Внешний вид измерителя со стороны лицевой панели.

На рисунке введены следующие обозначения:

  1.  - корпус прибора,
  2.  - гнездо включения внешней антенны,
  3.  - выключатель питания.
  4.  - кнопка выбора режимов измерения,
  5.  - кнопка запуска измерений и ввода результатов в память процессора,
  6.  - жидкокристаллический строчный дисплей,
  7.  - гнездо подключения зарядного устройства.

Маркировка и пломбирование.

 На лицевой панели прибора нанесены следующие маркировочные обозначения;

(а) товарный знак предприятия-изготовителя,

(б) условное обозначение названия прибора,

(в) тип прибора.

Заводской порядковый номер - на задней панели измерителя.

Корпус прибора опломбирован печатью предприятия-изготовителя или этикеткой контроля вскрытия. Пломбы с печатями ставятся в углублениях под винты, которыми крепится нижняя крышка измерителя. В случае нарушения пломбы или этикетки предприятие- изготовитель вправе отказаться от гарантийного ремонта.

Упаковка.

Упаковка измерителя должна производиться в индивидуальную транспортную тару (сумку) в соответствии с требованиями комплектации поставки. Измеритель, упакованный в транспортную тару, должен сохранять внешний вид и работоспособность после воздействия повышенной температуры 323° К (плюс 50°С).

Измеритель, упакованный в транспортную тару, должен сохранять внешний вид и работоспособность после воздействия пониженной температуры 253°К (минус 20°С).

Упаковка должна обеспечивать сохранность конструкции и параметров измерителя после воздействия вибраций по группе № 2 по ГОСТ 12997-87.

Эксплуатационные ограничения.

Измеритель не содержит источников напряжений, опасных для жизни, а также источников опасных излучений и является безопасным в эксплуатации. Не допускается подвергать измеритель ударным и вибрирующим воздействиям.

Подготовка изделия к использованию.

Перед работой необходимо провести внешний осмотр измерителя и убедиться в отсутствии механических повреждений корпуса и индикаторной панели.

Нажатием на кнопку «Питание» включить измеритель, дождаться результатов самотестирования и в случае высвечивания надписи "Батарея разряжена", прекратить работу и подключить измеритель к зарядному устройству. Для восстановления заряда батареи требуется не менее 10 часов заряда.

Для того, чтобы исключить разрядку батареи в процессе проведения измерений, следует, не дожидаясь ее полной разрядки, производить периодическую подзарядку батареи после 8 - 12 ч. работы измерителя в течение времени, равного половине времени работы измерителя.

Порядок работы.

По выбору пользователя может быть установлен либо режим непрерывного измерения среднеквадратических значений напряженности электрического поля и плотности магнитного потока (режим «НЕПРЕРЫВНО») либо режим измерения абсолютной величины полного вектора, включающий измерения трех компонент среднеквадратических значений напряженности электрического поля и плотности магнитного потока и последующее вычисление абсолютной величины вектора напряженности электрического поля и плотности магнитного потока (режим «АТТЕСТАТ»)

Первый режим целесообразно использовать для общего обследования рабочих помещений; определения среднего уровня электромагнитного излучения в помещении, поиска возможных источников излучения (по увеличению уровня полей при приближении к ним) и пр. Второй режим целесообразно использовать для аттестации рабочих мест операторов ВДТ и других электротехнических устройств.

При измерениях напряженности электрического поля и плотности магнитного потока следует закрепить прибор на диэлектрической штанге, входящей в комплект измерителя, и держать (а также перемещать) прибор только с ее помощью. При проведении аттестационных измерений штангу следует крепить на диэлектрическом основании (напр.- на диэлектрическом штативе, спинке деревянного стула и т.п.).

Результаты измерений параметров электрического поля в диапазонах 1 и 2 выдаются в единицах В/м (вольт на метр), результаты измерений параметров магнитного поля в диапазоне 1 выдаются в единицах мкТл (микротесла), в диапазоне 2 - в единицах нТл (нанотесла). При пересчетах следует иметь в виду, что 1 мктл = 1000 нТл.

Для выбора первого режима следует при высвечивании на индикаторе надписи "Выберите режим" кнопкой "Выбор" выбрать (добиваясь мигания соответствующей надписи) режим непрерывного измерения. Кнопкой "Ввод" включить выбранный режим измерений.

Далее, следует разместить измеритель передней торцевой частью в точке измерения и считать показания индикатора. Перемещая измеритель в различные точки рабочего помещения можно определить величину среднеквадратических значений напряженности электрического поля и плотности магнитного потока в этих точках. Результат измерения относится к точке, в которой находится геометрический центр передней торцевой панели прибора (рис. 3.).

Для выбора второго режима следует при высвечивании на индикаторе надписи "Выберите режим" кнопкой "Выбор" выбрать (добиваясь мигания соответствующей надписи) режим «Аттестация» (измерение полного поля). Кнопкой "Ввод" включить выбранный режим измерений. Поместить измеритель так, чтобы геометрический центр передней торцевой панели прибора (рис. 3.) находился в точке измерения (на расстоянии 0.5 м от экрана видеодисплейного терминала на перпендикуляре к его центру). Начальная ориентация прибора должна быть такой, чтобы стрелка на лицевой панели была расположена горизонтально, перпендикулярно плоскости экрана видеодисплейного терминала. Нажатием кнопки "Ввод" включить измерение.

Дождавшись звукового сигнала, свидетельствующего о выполнении измерения, переориентировать измеритель так, чтобы стрелка, оставаясь в горизонтальной плоскости, была ориентирована параллельно плоскости экрана видеодисплейного терминала. Нажатием кнопки "Ввод" включить измерение.

Дождавшись звукового сигнала, свидетельствующего о выполнении измерения, переориентировать измеритель так, чтобы стрелка на лицевой панели была расположена вертикально. Нажатием кнопки "Ввод" включить измерение.

Дождавшись звукового сигнала, свидетельствующего о выполнении измерения, нажать на кнопку "Ввод". Результаты проделанных измерений будут автоматически обработаны процессором измерителя и абсолютные величины векторов напряженности электрического поля и плотности магнитного потока в двух частотных диапазонах будут высвечены на индикаторе измерителя.

После окончания измерений следует записать результаты в протокол измерений и, нажав на кнопку "Питание", выключить прибор. Индикатор на панели измерителя погаснет.

Текущий ремонт изделия.

Измеритель параметров электрического и магнитного полей "ВЕ-метр-АТ002и представляет собой современное высоконадежное изделие, которое при эксплуатации в соответствии с требованиями настоящего руководства сохраняет работоспособность в течение всего срока между плановыми метрологическими поверками.

Возможные неисправности могут быть связаны с выходом из строя аккумуляторной батареи питания измерителя при неправильных режимах ее зарядки, либо с обрывами в шнурах (сетевом либо зарядном) зарядного устройства. Эти неисправности могут быть устранены заменой аккумуляторов в батарее питания, либо восстановлением целости шнуров зарядного устройства.

При появлении этих или других неисправностей следует обращаться к изготовителю измерителя.

Хранение и транспортирование,

Измерители до введения в эксплуатацию следует хранить в упаковке при температуре воздуха от 5 до 35 С и относительной влажности не более 85%. В воздухе помещений для хранения не должно быть агрессивных примесей (паров кислот, щелочей), вызывающих коррозию, а также источников сильных электромагнитных полей и ионизирующих излучений.

Транспортирование измерителей в упаковке изготовителя производится транспортом всех видов в крытых транспортных средствах в соответствии с правилами перевозок, действующими на транспорте данного вида. Измерители в упаковке должны быть закреплены в транспортных средствах с целью предохранения от перемещений и соударений.

Климатические условия транспортирования;

(а) температура окружающего воздуха от минус 20 С до плюс 50 С,

(б) относительная влажность до 95 %,

(в) атмосферное давление от 84 до 107 кПа (от 630 до 800 мм рт.ст.).

МЕТОДИКА ПОВЕРКИ

Настоящая методика распространяется на измеритель параметров электрического и магнитного полей ВЕ-МЕТР-АТ-002 и устанавливает методы и средства его первичной и периодической поверки. Периодичность поверки 12 мес.

Операция поверки.

При проведении поверки должны быть выполнены следующие операции:

  1.  Внешний осмотр.
  2.  Опробование.
  3.  Определение основной погрешности измерения.

Средства поверки.

При проведении поверки используются перечисленные ниже средства поверки.

Рабочий эталон единицы напряженности электрического поля в диапазоне частот от 0,5 до 4х106 Гц РЭНЭП-05Г/4М: диапазон частот от 0,5 до 4x106 Гц; диапазон напряженности электрического поля от 0,1 до 200 В/м в диапазоне частот от 0,5 кГц до 20 кГц; от ОД В/м до 10 В/м в диапазоне частот от 200 Гц до 4 МГц; пределы допускаемой основной погрешности эталона ±5%.

Рабочий эталон единицы напряженности магнитного поля РЭНМП-05Г/10М: диапазон частот от 0,5 до I х 107 Гц; диапазон напряженности магнитного поля от 0J до 1 А/м в диапазоне частот от 0,5 до 4х I О7; от I до 10 А/м на фиксированных частотах 0,1; 0,5; 1; 5; 10 МГц; от 1 до 100 А/м в диапазоне частот от 20 до 1x10s Гц; пределы допускаемой основной погрешности эталона ±5%.

Требования безопасности при поверке.

При проведении операций поверки должны соблюдаться меры безопасности, указанные в соответствующих разделах руководства по эксплуатации ВЕ-МЕТР-АТ-002 и инструкциях по эксплуатации РЭНЭП-05Г/4М и РЭНМП-05Г/10М.

Условия поверки и подготовка к ней.

При проведении поверки должны соблюдаться следующие условия:

• относительная влажность воздуха, % 65±15;

• атмосферное давление, кПа (мм.рт.ст.) 8 4-106 (630-795);

• напряжение сети питания, В 220±4,4;

• частота сети питания, Гц 50±0,2.

Перед проведением операций поверки необходимо выполнить подготовительные работы, оговоренные в разделе "Подготовка измерителя к работе" руководства по эксплуатации ВЕ-МЕТР-АТ-002 и в аналогичных разделах инструкций по эксплуатации РЭНЭП-05Г/4М и РЭНМП-05Г/10М.

ПРОВЕДЕНИЕ ПОВЕРКИ

Внешний осмотр.

При внешнем осмотре должно быть установлено соответствие измерителя следующим требованиям:

  1.  комплектность согласно паспорту;
  2.  сохранность пломб;
  3.  отсутствие видимых механических повреждений на составных частях измерителя;
  4.  прочность крепления органов управления, плавность их действия, четкость фиксации переключателей;
  5.  чистота разъемов и клемм;
  6.  состояние лакокрасочных и гальванических покрытий, четкость маркировок;
  7.  наличие и внешнее состояние элемента питания (на кем не должно быть следов коррозии и потеков электролита);
  8.  отсутствие отсоединившихся или слабо закрепленных внутренних элементов (определяется на слух при легком встряхивании функциональных узлов измерителя).

Результаты внешнего осмотра считаются положительными, если выполняются требования.

Опробование.

Опробование работы измерителя производится по пунктам, руководства по эксплуатации ВЕ-МЕТР-АТ-002.

Результаты опробования считаются положительными, если нет отклонения в работе измерителя при выполнении пунктов.

Определение основной погрешности измерения.

Определение основной погрешности измерения производится методом прямого измерения среднего квадратического значения напряженности эталонного электрического поля, воспроизводимого в РЭНЭП-05/4М, при синусоидальной и импульсной зависимости от времени и среднего квадратического значения магнитной индукции (плотности магнитного потока) эталонного магнитного поля, воспроизводимого в РЭНМП-05Г/1 ОМ, при синусоидальной зависимости от времени.

При положительном результате поверки поверяемый измеритель признается годным к применению и на него выдается свидетельство о поверке установленного образца.

При отрицательном результате поверки поверяемый измеритель не допускается к дальнейшему применению и на него выдается извещение о непригодности к применению установленного образца с указанием причин непригодности.


7.Практическая часть.


Библиографический список:

1. Закон РФ «О санитарно-эпидемиологическом благополучии населения».

2. Закон РФ «Об обеспечении единства измерений».

3. ГОСТ 8.030-91. ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений магнитной индукции постоянного поля в диапазоне 1·10-12 + 5·10-2 Тл, постоянного магнитного потока, магнитной индукции и магнитного момента в интервале частот 0 - 20000 Гц.

4. ГОСТ 8.097-73. ГСИ. Государственный специальный эталон и общесоюзная поверочная схема для средств измерений напряженности магнитного поля в диапазоне частот от 0,01 до 300 МГц.

5. ГОСТ 8.560-94. ГСИ. Государственная поверочная схема для средств измерений напряженности электрического поля в диапазоне частот 0,0003 - 1000 МГц.

6. ГОСТ Р 8.564-98. ГСИ. Государственная поверочная схема для средств измерений электрической емкости в диапазоне частот от 1 до 100 МГц.

7. ГОСТ Р 8.574-2000. ГСИ. Государственная поверочная схема для средств измерений плотности потока энергии электромагнитного поля в диапазоне частот 0,3 - 178,4 ГГц.

8. СанПиН 2.1.8/2.2.4.1383-03. Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов.

9. СанПиН 2.1.2.1002-2000. Санитарно-эпидемиологические требования к жилым зданиям и помещениям.

10. СанПиН 2.2.2/2.4.1340-03. Гигиенические требования к персональным электронно-вычислительным машинам и организации работы.

11. СанПиН 2.1.8/2.2.4.1190-03. Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи.

12. МСанПиН 001-96. Санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях.

13. МУК 4.3.044-96. Определение уровней электромагнитного поля, границ санитарно-защитной зоны и зон ограничения застройки в местах размещения передающих средств радиовещания и радиосвязи кило-, гекто- и декаметрового диапазонов.

14. МУК 4.3.1676-03. Гигиеническая оценка электромагнитных полей, создаваемых радиостанциями сухопутной подвижной связи, включая абонентские терминалы спутниковой связи.

15. МУК 4.3.1677-03. Определение уровней электромагнитного поля, создаваемого излучающими техническими средствами телевидения, ЧМ радиовещания и базовых станций сухопутной подвижной радиосвязи.

16. МУК 4.3.678-97. Определение уровней напряжений, наведенных электромагнитными полями на проводящие элементы зданий и сооружений в зоне действия мощных источников радиоизлучений.

17. МУК 4.3.679-97. Определение уровней магнитного поля в местах размещения передающих средств радиовещания и радиосвязи кило-, гекто- и декаметрового диапазонов.

18. МУК 4.3.1067-02. Определение плотности потока энергии в местах размещения радиосредств, работающих в диапазоне частот 300 МГц - 300 ГГц.

19. Методические указания по определению электромагнитного поля воздушных высоковольтных линий электропередачи и гигиенические требования к их размещению. № 4109-86.

20. СН 2550-82. Предельно допустимые нормы напряженности электромагнитного поля, создаваемого индукционными бытовыми печами, работающими на частоте 20 - 22 кГц.

21. СН 2666-83. Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами.

22. СН 2158-80. Санитарно-гигиенический контроль полимерных стройматериалов, предназначенных для применения в строительстве жилых и общественных зданий.

23. СНиП 2971-84. Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты.

24. Радиационная медицина: Руководство для врачей-исследователей и организаторов здравоохранения. - Т. IV. Гигиенические проблемы неионизирующих излучений / Под общ. ред. Л.А. Ильина - М.: ИздАТ, 1999.

25. Григорьев Ю.Г., Степанов B.C., Григорьев О.А., Меркулов А.В. Электромагнитная безопасность человека. - М.: Российский национальный комитет по защите от неионизирующего излучения, 1999.

26. Громаков Ю.А. Стандарты и системы подвижной радиосвязи. - М.: «ЭКО-ТРЕНДЗ», 1998.

27. Измеров Н.Ф., Пальцев Ю.П., Суворов Г.А., Тарасова Л.А., Никонова К.В., Рубцова Н.Б., Походзей Л.В., Левина А.В. Неионизирующие электромагнитные излучения и поля: Руководство «Физические факторы. Эколого-гигиеническая оценка и контроль». -Т. 1. - М.: Медицина, 1999. - С. 8 - 95.

28. Никонова К.В., Савин Б.М. Гигиеническое обоснование подходов к нормированию радиоволн//Методологические вопросы гигиенического нормирования электромагнитных излучений радиочастотного диапазона: Сб. научн. тр. - М.: НИИ ГТиПЗ АМН СССР, 1979. - С. 43 - 59.

29. Никольский В.В.. Теория электромагнитного поля. - М.: Изд-во «Высшая школа», 1964.

30. Савин Б.М. Проблема гигиенического нормирования электромагнитных излучений радиочастотного диапазона на современном этапе//В кн. «Методологические вопросы гигиенического нормирования ЭМИ радиочастотного диапазона». - М. - НИИ ГТиПЗ АМН СССР, 1979.

31. Суворов Г.А., Пальцев Ю.П., Хунданов Л.Л., Рубцова Н.Б., Никонова К.В., Походзей Л.В. Неионизирующие электромагнитные излучения и поля (Экологические и гигиенические аспекты). - М. - 1998.

32. Чечурина Е.Н. Приборы для измерения магнитных величин //Электроизмерительные приборы. - Выпуск 13. - М.: Изд-во «Энергия», 1969.

33. Феер К. Беспроводная цифровая связь. - М.: «Радио и связь», 2000.


 

А также другие работы, которые могут Вас заинтересовать

39241. Назначение, структура и принцип действия радиоприемного устройства (РПУ) 4.79 MB
  Современное РПУ должно обеспечить прием нужного сигнала в фоне колебаний от всевозможных посторонних источников называемых помехами. При этом мощность помех действующих на РПУ может превышать мощность требуемого сигнала в миллионы раз что естественно затрудняет его прием. Преобразование принятого радиочастотного колебания в напряжение или ток изменяющегося в соответствие с переданным сообщением; для этого требуется осуществить фильтрацию сигнала от помех его усиление и детектирование; 3. Функция радио тракта кроме усиления сигнала...
39242. Предварительный расчет радиовещательного приемника с магнитной антенной ДВ, СВ диапазонов 2.44 MB
  Выбор промежуточной частоты . Выбор транзисторов трактов радио – и промежуточной частоты стр. Выбор избирательной системы тракта радиочастоты . Выбор избирательной системы тракта промежуточной частоты .
39243. Типовое рабочее место монтажника радиоаппаратуры и устройств в критериях единичного мелкосерийного производства 206.5 KB
  Тема данной производственной практики актуальна на сегодняшний день, потому что для более эффективного функционирования предприятия необходимо знание, изучение структурных подразделений предприятия. Цель производственной практики - глубокий анализ предприятия и его подразделений. Главная задача данной работы - изучить, исследовать тот или иной тип структуры, более подробно рассмотреть механизм его функционирования на практике.