86763

Кеплеровы элементы орбиты ИСЗ. Орбитальная система координат

Лабораторная работа

География, геология и геодезия

В орбитальной системе координат положение ИСЗ в плоскости орбиты определяется радиус-вектором r и углом υ который отсчитывается от линии апсид и называется истинная аномалия. Линия пересечения плоскости орбиты и плоскости экватора называется линией узлов.

Русский

2015-04-10

42 KB

9 чел.

Федеральное агентство по образованию РФ

ПЕРМСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Маркшейдерского дела, Геодезии и Геоинформационных систем

Лабораторная работа №2

По дисциплине «Основы космической геодезии»

«Кеплеровы элементы орбиты ИСЗ. Орбитальная система координат»

Вариант №7

Выполнила

студентка группы ПГ-10 …………………………………………………….Еговцева Р.В.

 

Руководитель…………………………………………………………………Ашихмин С.Г.    

Пермь 2014

Краткие теоретические сведения:

В теории невозмущенного движения искусственных спутников Земли доказывается, что движение ИСЗ в околоземном пространстве происходит по плоской эллиптической орбите. В орбитальной системе координат положение ИСЗ в плоскости орбиты определяется радиус-вектором r и углом υ, который отсчитывается от линии апсид и называется истинная аномалия. Вспомогательными величинами являются:

  •  фокальный параметр р;
  •  эксцентрическая аномалия Е;
  •  средняя аномалия М.

Линия пересечения плоскости орбиты и плоскости экватора называется линией узлов. На противоположных концах линии узлов находятся восходящий и нисходящий узлы орбиты. Угловое расстояние от восходящего узла до перигея ω называется аргументом перигея. Угловое расстояние от точки весеннего равноденствия до восходящего узла Ω называется долготой восходящего узла. Угол наклона плоскости орбиты к плоскости экватора ι называется наклоном орбиты. Угол u = ω + υ называют аргумент широты. Движение спутника по орбите характеризуется временем τ – время прохождения ИСЗ через перигей. В целом Кеплерова орбита характеризуется пятью элементами:

  1.  элементы, отвечающие за форму орбиты (большая полуось а и эксцентриситет е);
  2.  элементы, отвечающие за положение орбиты в пространстве (долгота восходящего узла Ω, аргумент перигея ω и наклон орбиты ι);
  3.  динамический элемент τ.

Кеплеровы элементы могут быть определены по результатам наблюдений ИСЗ.

Исходные данные:

  1.   Т = 52890 сек. – момент времени;
  2.    х = 3930,116 км

    у = 5170,371 км          координаты в Гринвичской системе координат

    z = 3577,239 км                      

X’ = -2.994576 км/сек      

Y’ =   -2.958996 км/сек                 компоненты скорости   

Z’ = 6.556629 км/сек              

  1.   В = 56,253°;
  2.   L = 23,512°;
  3.   Н = 0,037 км;
  4.   ωз = 0,7292115*10-4 рад/сек.

Выполнение работы:

1. Преобразование координат X, Y, Z и компонент скорости X’, Y’, Z’ ИСЗ из Гринвичской системы координат в инерциальную:

х = Х Cos (S) - Y Sin (S) = 6300,669159 км

y = X Sin (S) + Y Cos (S) = 1574,838469 км

z = Z = 3577,239 км

S = S0 + T + 0,0027379093 T = 321,2727166°

x’ = X’ Cos (S) – Y’ Sin (S) – ωз [ X Sin (S) + Y Cos (S) ] = -4,302195315 км/с

y’ = X’ Sin (S) + Y’ Cos (S) + ωз [ X Cos (S) - Y Sin (S) ] = 0,024492149 км/с

z’ = Z’= 6,556629 км/с

2. Вычисляем вспомогательные величины: радиус-вектор r ИСЗ, модуль вектора скорости V, радиальную Vr и трансверсальную Ve составляющие вектора скорости, компоненты вектора кинетического момента движения с1, с2, с3 и его модуль с:

r = √x2 + y2 + z2 = 7414,525 км

V = √x2 + y2 +z2 = 7,842121412 км/с

Vr = 1/r((x’ + yy’ + zz’))= -0,487355427 км/с

Ve = √V2Vr2 = 7,8269632 км/с

с1 = yz’ – zy’ = 10238,0173

c2 = zx’ – xz’ =  -56701,13099

c3 = xy’ – yx’ = 6929,579613

c = √ c12 + c22 + c32 = 58033,21745

3. Вычисление угла наклона орбиты ι, долготы восходящего узла Ω и аргумента широты u:

 ι = arcos (c3/c) = 83° 08’31,6 ”

 Ω = arctg [ c1 / (-c2)] = 10°1 4’ 6,4”

 u = arctg [ (cz)/ (c1y – c2x)] = 29° 04’ 26,8”   

4. Вычисляем компоненты вектора Лапласа g и h, эксцентриситет орбиты е, фокальный параметр орбиты р, большую полуось а и среднее движение n:

  g = c/ μ [(Ve – μ/c) Sin (u) – Vr Cos (u)] = 0,129825672

  h = c/ μ [(Ve – μ/c) Cos(u) + Vr Sin (u)] = 0,087482608

  e = √ g2 + h2 = 0,15655003

  p = c2/μ = 8449,197449

  a = p/ (1 – e2) = 8661,472043

  n = √μ/a3 = 0,000783216

5. Вычисляем аргумент перицентра ω, истинную, эксцентрическую и среднюю аномалии υ, Е, М и среднюю долготу в эпоху l:

ω = arctg (g/h) = 56° 01’33,8 ”

  υ = uω = 333° 02’52,9 ”

  E = 2 arctg [√(1 – e)/(1+e) * tg (υ/2)] = 359° 35’46,6 ”

  M = E – e Sin (E) = 359° 26’26,8 ”

  l = M + ω = 55° 28’0,7 ”


 

А также другие работы, которые могут Вас заинтересовать

39961. ДЕТАЛИ МАШИН И ОСНОВЫ КОНСТРУИРОВАНИЯ 10.06 MB
  1 а е: Ft Н окружная сила на барабане ленточного или на звездочке цепного конвейера; V м с скорость движения ленты или цепи; Dб мм диаметр барабана; Zзв число зубьев тяговой звездочки; Рзв мм шаг тяговой цепи.2 Вид передачи Твердость зубьев Передаточное число Uрек Uпред Зубчатая цилиндрическая: тихоходная ступень во всех редукторах uт 350 НВ 40. Термообработка зубчатых колес редуктора улучшение твердость зубьев 350НВ. Первая группа колеса с твердостью поверхностей зубьев Н  350 НВ Применяются в слабо и...
39962. Специализированный вычислитель (СВ) 194 KB
  При обращении ВчУ в режиме Чтение к ОЗУ по адресу 034320 обращение происходит в ячейке ДЗУ с адресом 134320. Специализированный вычислитель СВ относится к классу специализированных ЭВМ и предназначен для решения специфических задач обработки информации: 1. Отображение информации на рабочих местах РМ лиц боевого расчета; 3. Вычислительное устройство ВчУ является основным операционным устройством СВ предназначенным для обработки цифровой и логической информации реагирования на сигналы прерывания внешних устройстви управления...
39963. Методы локализации неисправностей в аппаратуре СВ и РМ 47 KB
  Наиболее склонными к поломке элементами являются транзисторы. Основные же мероприятия по устранению неисправности на принципиальном уровне сводятся к выпаиванию неисправного элемента и впаиванию на его место нового в случае необходимости замены элемента резисторы транзисторы диоды и другие. На принципиальном уровне неисправными элементами могут быть транзисторы на платах: ВУ2: Т1 Т2 Т3 либо Т4. Более полная информация о неисправных транзисторах находится в перечне элементов схемы.
39964. Отчет по учебной геологической практике 69 KB
  Целью проведения полевой практики по инженерной геологии является закрепление теоретического материала и ознакомление с природными условиями залегания различных типов горных пород а также с формами проявления геологических и инженерногеологических процессов. Ее учебными задачами являются: Приобретение навыка визуального определения геологических особенностей горных пород. В течении практики в полевых условиях изучаются: Вещественный состав и строение пород. Условия формы залегания пород.
39965. Учебная геологическая практика 865 KB
  4 Порядок проведения практики. Оценка практики. Цели и задачи практики Учебная геологическая практика проводится в летнее время после изучения студентами курса Инженерная геология.
39966. ГИДРОПНЕВМОПРИВОД МЕТАЛЛУРГИЧЕСКИХ МАШИН 3.27 MB
  Руководитель курсовой работы сообщает каждому студенту номер задания и номер варианта. Расчетно-пояснительная записка должна содержать оглавление с наименованием всех основных разделов записки; задание; введение, в котором излагаются достоинства и недостатки объемного гидропривода
39967. Гидропривод металлургических машин 8.17 MB
  Рисунок 1 Схемы иллюстрирующие принцип действия объёмного гидропривода. Из рисунка 1а следует что при приложении силы Р к закрытому сосуду через поршень эта сила уравновешивается силой давления жидкости силой трения пренебрегаем и силой тяжести тоже Положение сохраняется если в качестве сосуда возьмём два гидроцилиндра соединённых гидролинией рисунок 1б При перемещении поршня 1 произойдёт вытеснение жидкости под поршнем 2. Реверсирование гидромотора можно осуществить также изменением направления потока жидкости направляемого насосом...
39968. Проектирование привода технологического оборудования 1.54 MB
  Модуль числа зубьев колес и коэффициенты смещения . Модуль числа зубьев колес и коэффициенты смещения. Определим размеры характерных сечений заготовок по формулам тогда мм Кm = 20 – коэффициент учитывающий вид передачи; Диаметр заготовки колеса равен Выбираем материал для колеса и шестерни – сталь 45 термообработка – улучшение твердость поверхности зуба шестерни 269302 HB Dm1 = 80 мм Dm1 Dm твердость поверхности зуба колеса 235262 НВ Sm1 = 80 мм Sm1 Sm. Для их определения используем зависимость Пределы контактной...
39969. Расчет эффективности проекта реконструкции установки АВТ-4 547.41 KB
  Приведены расчеты: анализ использования производственной мощности расчеты производственной программы и производственной мощности материального баланса установки до и после реконструкции расчет ФЗП и себестоимости продукции а также расчет основных техникоэкономических показателей и эффективность инвестиционного проекта кроме того приводится анализ рынка продукции нефтеперерабатывающих заводов. Введение 3 1 Анализ рынка продукции нефтеперерабатывающих заводов 5 2 Анализ использования производственной мощности 9 3 Расчет производственной...