86868

Табулирование функций

Лабораторная работа

Информатика, кибернетика и программирование

Основные понятия Табулирование функции это вычисление значенй функции при изменении аргумента от некоторого начального значения до некоторого конечного значения B с определенным шагом H. С помощью табулирования можно хотя и очень грубо найти минимум или максимум функции.

Русский

2015-04-11

113.5 KB

6 чел.

абораторная работа №5  OpenOffice Calc

Лабораторная работа №5

Табулирование функций

1. Основные понятия

Табулирование функции - это вычисление значенй функции при изменении аргумента от некоторого начального значения (A) до некоторого конечного значения (B) с определенным шагом (H). Именно так составляются таблицы значений функций, отсюда и название - табулирование. Необходимость в табулировании возникает при решении достаточно широкого круга задач. Например, при численном решении нелинейных уравнений  f(x) = 0, путем табулирования можно отделить (локализовать) корни уравнения, т.е. найти такие отрезки, на концах которых, функция имеет разные знаки. С помощью табулирования можно, хотя и очень грубо, найти минимум или максимум функции. Иногда случается так, что функция не имеет аналитического представления, а ее значения получаются в результате вычислений, что часто бывает при компьютерном моделировании различных процессов. Если такая функция будет использоваться в последующих расчетах (например, она должна быть проинтегрирована или продифференцирована и т.п.), то часто поступают следующим образом: вычисляют значения функции в нужном интервале изменения аргумента, т.е. составляют таблицу (табулируют), а затем по этой таблице строят каким-либо образом другую функцию, заданную аналитическим выражением (формулой). Необходимость в табулировании возникает также при построении графиков функции на экране компьютера.

2. Постановка задачи

Итак, пусть необходимо протабулировать функцию f(x)=exp(-x2) на интервале [-2, 2] с шагом 0,1.

3. Решение

Создайте новую рабочую книгу OpenOffice Calc и назовите ее Лаб.раб.5.

"Лист1" переименуйте в "Табулирование", создайте таблицу в соответствии с рис. 1.

Рис.1

В ячейке В3 укажите шаг дискретизации «0,2». В ячейку В5– начало дискретизации «-2».

Для вычисления значений аргументов функции в ячейку В6 впишите формулу для расчета Х:

=B5+B$3.

Обратите внимание, указатель на значение шага дискретизации (ячейка В3) должен быть абсолютным (В$3).

Испульзуя автозаполнение скопируйте значение ячейки B6 вниз до ячейки В25 (рис.2).

Рис.2.

Таким образом получили значения аргумента функции X в диапазоне от -2 до 2 с шагом дискретизации 0,2.

Для вычисления значений функции необходимо в ячейку С5 вписать исследуемую функцию:

=EXP(-B5*B5).

Используйте для этого Мастер Функций->Математические.

Используя автозаполнение скопируйте содержимое ячейки C5 вниз до ячейки С25.

В формате ячеек С5:С25 укажите вывод дробной части 4 знака после запятой (рис.3).

Рис.3.

Получили таблицу значений функции f(x)=exp(-x2)  на интервале от -2 до 2 с шагом 0,2.

График функции

Имея значения функции в точках можно построить ее график. Для этого необходимо выделить диапазон ячеек С4:С25, запустить Мастер Диграмм. Выберите тип диаграммы: Линия (Только линии), Сглаживание линий. Перейдите к настройкам "Ряды данных" нажав на кнопку Далее два раза. В поле "Ряд данных-> Категории" укажите диапазон значений Х для подписи данных на графике: $Лист1.$B$5:$B$25. Получили график данной функции (рис.4.).

Рис.4.

Поиск экстреммумов функции

Приближенные значения минимума и максимума функции на указанном интервале можно найти используя встроенные в Ooo Calc функции MIN и MAX.

Для этого в ячейку С28 используя Мастер функций необходимо вписать формулу:

=MIN(C5:C25).

А в ячейку С29:           =MAX(C5:C35)

Получили приближенное значение минимума и максимума функции на интервале [-2, 2] (рис.5).

Рис.5.

Создайте 2 стиля: «Минимум» - цвет фона синий, и «Максимум» - цвет фона красный.

Испульзуя условное форматирование задайте формат ячеек «Минимум» если значение ячейки равно значению ячейки С28, и формат «Максимум» если значение равно С29 (рис.6).

Рис.6.

Интегрирование функции

Для приближенного интегрирования функции используем численный метод "Левых прямоугольников", в котором значение интеграла заменяется суммой:

где a, b – интервал интегрирования, n – количество интервалов разбиения функции, x1=a, xn=b, xi=a + (i-1)*h, h=(b-a)/n – шаг дискретизации, f(xi) – значения функции в i-й точке дискретизации.

В ячейку С31 впишите формулу:

=SUM(C5:C24)*B3

Обратите внимание, в диапазон суммирования не входит последнее значение функции в точке f(B).

Рис.7.

Задания для самостоятельной работы

3 / 3


 

А также другие работы, которые могут Вас заинтересовать

18292. НЕДЕСЯТКОВІ ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ 158 KB
  Лекція 19 НЕДЕСЯТКОВІ ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ Недесяткові позиційні системи числення: запис читання і порівняння чисел в них. Алгоритми додавання і віднімання чисел в недесяткових позиційних системах числення. Таблиці додавання. Алгоритми множення і д...
18293. ВІДНОШЕННЯ ПОДІЛЬНОСТІ 73 KB
  Лекція 20 ВІДНОШЕННЯ ПОДІЛЬНОСТІ Відношення подільності на множині цілих невід’ємних чисел та його властивості. Подільність суми різниці і добутку. Поняття про ознаку подільності. Ознака подільності Паскаля. Ознаки подільності на 2 3 4 5 9 11 25 в десятко...
18294. СПІЛЬНІ КРАТНІ І ДІЛЬНИКИ 101 KB
  Лекція 21 СПІЛЬНІ КРАТНІ І ДІЛЬНИКИ Спільні кратні та найменше спільне кратне кількох натуральних чисел і його властивості. Спільні дільники та найбільший спільний дільник кількох натуральних чисел і його властивості. Взаємно прості та попарно взаємнопрості...
18295. ПРОСТІ І СКЛАДЕНІ ЧИСЛА 116.5 KB
  Лекція 22 ПРОСТІ І СКЛАДЕНІ ЧИСЛА Розбиття множини цілих невід’ємних чисел на 4 класи за кількістю дільників. Прості і складені числа. Властивості відношення подільності між двома натуральними числами одне з яких просте. Існування простого дільника у кожно
18296. МНОЖИНА ДОДАТНИХ РАЦІОНАЛЬНИХ ЧИСЕЛ. АРИФМЕТИЧНІ ОПЕРАЦІЇ НАД ДОДАТНИМИ РАЦІОНАЛЬНИМИ ЧИСЛАМИ 363.5 KB
  Лекція 23 МНОЖИНА ДОДАТНИХ РАЦІОНАЛЬНИХ ЧИСЕЛ. АРИФМЕТИЧНІ ОПЕРАЦІЇ НАД ДОДАТНИМИ РАЦІОНАЛЬНИМИ ЧИСЛАМИ Задача розширення поняття числа. Короткі історичні відомості про виникнення раціональних і дійсних чисел. Сумірні відрізки. Вимірювання відрізків сум...
18297. ДЕСЯТКОВІ ДРОБИ 177.5 KB
  Лекція 24 ДЕСЯТКОВІ ДРОБИ Поняття про десятковий дріб. Поширення позиційного принципу запису до запису десяткових дробів. Властивості десяткових дробів. Поняття про процент відсоток. Алгоритми арифметичних операцій над десятковими дробами. Перетворе
18298. МНОЖИНА ДОДАТНИХ ДІЙСНИХ ЧИСЕЛ. МНОЖИНА ДІЙСНИХ ЧИСЕЛ 188.5 KB
  Лекція 25 МНОЖИНА ДОДАТНИХ ДІЙСНИХ ЧИСЕЛ. МНОЖИНА ДІЙСНИХ ЧИСЕЛ Несумірні відрізки. Існування несумірних відрізків. Вимірювання несумірного з одиничним відрізком. Нескінченні неперіодичні десяткові дроби. Від’ємні дійсні числа. Число нуль€. Множина д...
18299. ВИРАЗИ. Вирази із замінимим та їх основні характеристики 109 KB
  Лекція 26 ВИРАЗИ Числовий вираз і його значення. Числові рівності і їх властивості. Числові нерівності та їх властивості. Вирази із замінимим та їх основні характеристики. Відношення тотожності на множині виразів. Тотожні перетворення на множині вира...
18300. РІВНЯННЯ. Лінійні рівняння з однією зміною та їх розв’язування 80 KB
  Лекція 27 РІВНЯННЯ Рівняння з однією зміною як предикат та його основні характеристики. Рівносильні рівняння. Теореми про рівносильність рівнянь та наслідки з них. Лінійні рівняння з однією зміною та їх розв’язування з аналізом використаної при цьому теор