87029

Привод вращательного движения

Курсовая

Производство и промышленные технологии

Модули вращательного движения имеют широкое распространение во всех областях техники. В робототехнике такие модули используют в качестве приводов движения рабочего органа и передвижения робота в целом. Основными узлами данного привода являются: двигатель, создающий крутящий момент; муфта для передачи крутящего момента на входной вал редуктора; редуктор для понижения частоты вращения вала двигателя до требуемой в исполнительном механизме.

Русский

2015-04-13

440.5 KB

4 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

КУРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра теоретической механики и мехатроники

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по дисциплине

«Детали машин и основы конструирования»

Автор проекта:

студент гр.

Специальность:

Обозначение проекта:

Руководитель проекта:

 

Проект защищён:

Оценка:

Члены комиссии:

 

Курск 2007


Содержание

Введение  3

1. Выбор электродвигателя  4

2. Расчет редуктора  5

2.1 Выбор схемы и расчёт основных параметров редуктора 5

2.2 Расчет параметров ступени редуктора  8

2.3 Расчет валов 10

2.4.Расчет штифтового соединения 11

2.5 Расчет и выбор подшипников 12

2.6. Расчёт кинематической погрешности передачи 14

3. Выбор и расчет муфты 17

Заключение 18

Список использованной литературы 19


Введение

Модули вращательного движения имеют широкое распространение во всех областях техники. В робототехнике такие модули используют в качестве приводов движения рабочего органа и передвижения робота в целом.

Основными узлами данного привода являются: двигатель, создающий крутящий момент; муфта для передачи крутящего момента на входной вал редуктора; редуктор для понижения частоты вращения вала двигателя до требуемой в исполнительном механизме.

В данном курсовом проекте необходимо спроектировать привод вращательного движения по следующим данным: частота вращения выходного вала: , крутящий момент на выходном валу .


1. Выбор электродвигателя

Электродвигатель подбираем по мощности, потребляемой механизмом.

Мощность, потребляемая приводом, определяется следующим образом:

,

где Tвых – заданный крутящий момент;

ωвых – заданная частота вращения выходного вала.

Мощность, потребляемую электродвигателем, определим по формуле:

,

где ξ – коэффициент, учитывающий динамические нагрузки ();

η – КПД редуктора (принимаем ).

По частоте вращения выходного вала определим его угловую скорость:

.

Таким образом, необходимая мощность электродвигателя равна:

.

Выбираем двигатель, мощность которого должна быть больше или равна рассчитанной.

Принимаем бесконтактный двигатель постоянного тока с датчиком углового положения и коммутатором (возбуждение от постоянных магнитов)  БК 1324, Его технические и геометрические характеристики :

  •  номинальная выходная мощность: ;
  •  номинальная частота вращения ротора: ;
  •  номинальный вращающий момент: ;
  •  номинальный ток в обмотке якоря: ;
  •  габаритные размеры: , ;
  •  диаметр выходного вала: ;
  •  масса:


2. Расчёт редуктора

2.1. Выбор схемы и расчёт основных параметров редуктора

Найдём необходимое передаточное отношение редуктора:

.

Выбираем трёхступенчатый редуктор Джеймса. Его кинематическая схема изображена на рис.1.

Рис. 1. Кинематическая схема редуктора.

Передаточное отношение всех ступеней принимаем одинаковым и равным

. [3, стр. 138]

Определяем количество зубьев:

Числа зубьев подберем путем совместного решения уравнения передаточного отношения  и условия соосности , с учетом условия сборки:

 

где:

К – число сателлитов,

Θ – целое число [6, стр. 187].


Исходя из конструктивных соображений принимаем число зубьев центрального колеса равным , а число зубьев солнечного колеса

Проверка по условию сборки:

- целое число, расчет проведен верно.

Исходя из условия соосности, определим число зубьев сателлита:

.

Определим фактическое передаточное отношение ступени:

При этом ошибка:

Определим угловые скорости для каждой ступени. Кинематическая схема одной ступени показана на рис. 2:

Рис. 2. Кинематическая схема одной ступени редуктора.

;

;

Определим КПД передачи:

Определим крутящие моменты:

,

где ηм – КПД муфты;

где ηз.п. – КПД передачи; ηп – КПД подшипника скольжения;

;

;

.


2.2. Расчёт параметров ступеней редуктора

Для расчёта межосевых расстояний ступеней редуктора воспользуемся формулой:

,  [4, стр. 135]

где Eпр – модуль Юнга (для данного материала Eпр=1,2.103);

Ti – крутящий момент (Ti.м)

Кнв– коэффициент концентрации нагрузки по контактным напряжениям(=1.13);

– допускаемое контактное напряжение (материал полиамид 610, ГОСТ 10589-87);

– коэффициент ширины зубчатого венца;

.

Модули зубчатых колёс рассчитываем по формуле:

.

Примем модули всех зубчатых колес равными m = 0.5 [5, стр. 212], при этом межосевое расстояние станет равным:

;

тогда ширина зубчатого венца:

.

Диаметры делительных окружностей зубчатых колес:

;

;

.

Диаметры окружностей вершин:

;

;

.

Диаметры окружностей впадин:

;

;

.


2.3. Расчёт валов

Предварительный расчёт:

Так как муфта передаёт на вал только крутящий момент, поэтому часть вала с насаженной муфтой работает лишь на кручение. Тогда из условия прочности находим диаметр вала под соединительную муфту:

, [5, стр. 371]

где  - крутящий момент;

- допускаемое напряжение при кручении,

;

,

где n – запас(1.5…5).

Подставляя в формулу конкретные значения, получим:

.

Так как диаметр вала двигателя больше, чем диаметр вала под муфту, то примем .

Вследствие незначительных нагрузок диаметры всех остальных валов принимаем равными 4 мм.


2.4. Расчет штифтового соединения

Для используемого в данной работе муфтового соединения применяются штифты. Штифтовое соединение, нагруженное крутящим моментом T (=Н.мм), рассчитывается на срез. Запишем условие прочности:

, [5, стр.149]

где   допускаемое напряжение на сдвиг (для стали 50 МПа),

- сила вызывающая сдвиг (срез) штифта, где d – диаметр вала;

- площадь поперечного сечения, откуда:

.

Рассчитаем диаметр штифта:

 

Примем диаметр штифта равным 1 мм, тогда длинна штифта:


2.5. Расчет и выбор подшипников

Так как осевая нагрузка равна 0, то в качестве всех опор будем использовать радиальные подшипники скольжения. В качестве материала будем использовать углепластик АФ-3Т [1, т. 2 стр. 66], с высоким содержанием порошковых углеродных наполнителей и смол горячего отверждения. Выбор обоснован возможностью таких подшипников работать без смазки, при сложных внешних условиях (запыленность, резкий перепад температур и т. д.). Далее приведена характеристика АФ-3Т (рис. 4)

Рис.4. Характеристика материала для подшипника скольжения

Рассчитаем подшипники под выходной вал. Для этого определим нагрузку на опору. Для последнего зубчатого колеса определи окружную и радиальную силу:

Окружная сила:

, [5, стр. 375],

где T – крутящий момент на водиле III ступени передачи();

m – модуль зубчатого зацепления, сателлита и солнечного колеса;

z -  чмсло зубьев сателлита.

.

Радиальная сила:

, [5, стр. 375]

.

Итак, условие работоспособности по удельному давлению:

, [5, стр. 404]

где F – нагрузка на опору, l и d – длинна и диаметр вкладыша,

- допускаемое давление (=12 МПа). Найдем p:

Запишем критерий теплостойкости:

, [5, стр. 404]

где n – частота вращения вала (20 об/мин),

- допускаемое значение критерия теплостойкости (=30 МПа.м/сек)

Определим момент трения:

Рис . 5. Подшипник скольжения


2.6. Расчёт кинематической погрешности передачи

Определим кинематическую погрешность передачи. Кинематической погрешностью называют алгебраическую разность между погрешностями положения ведомого колеса, вызванную погрешностями изготовления и сборки передачи.

Согласно ГОСТ 21098-82 кинематическую погрешность определяют методом максимума-минимума и вероятностным методом.

Рис. 3. Расчетная схема

Определим максимальное значение кинематической погрешности, мкм:

[3, стр.249]

  K – коэффициент фазовой компенсации, принимаемые в зависимости от передаточного отношения (K = 0,96);   - допуск, мкм, на кинематическую погрешность колеса:

где   - допуск, на накопленною погрешность шага зубчатого колеса (для 7-й степени точности = 4 мкм), - допуск на погрешность профиля зуба (= 2 мкм).

- суммарная приведенная погрешность монтажа, определяется по формуле

[3, стр. 249],

где α – угол зацепления (20°); β – угол наклона линии зуба (0°), er = Fr – монтажное радиальное биение зубчатого колеса(5 мкм), еа – монтажное осевое биение зубчатого колеса (7 мкм)

.

.

.

При вероятностном методе расчета максимальное значение кинематической погрешности передачи определяется по формуле:

[3, стр. 250],

где  - вероятностный коэффициент фазовой компенсации, принимаемый в зависимости от передаточного отношения и процента риска (= 0.9 при Р = 10%).

.

Выразим кинематическую погрешность одной ступени в угловых единицах (мин):

[3, стр. 250].

Так как все ступени идентичны, то суммарная кинематическая погрешность редуктора составит 61,4’.

Определим мертвый ход, вызванный боковыми зазорами между зубьями колес:

[6, стр. 135]

где  - наибольшая вероятная величина бокового зазора между зубьями колес (ГОСТ 9178-72) (Для 7-й степени точности, при виде сопряжения F ).

,

Определим суммарный мертвый ход редуктора:

[6, стр. 135]


3. Выбор и расчет муфты

Для уменьшения кинематической погрешности за счет относительного смещения валов, целесообразно применить глухую втулочную муфту (рис. 4), которая не допускает смещения соединяемых валов. Муфта представляет собой втулку, которая сопрягается с валиками по посадкам типа H/h 8-го квалитетов и закрепляется посредством штифтов [3, стр. 429].

Рис.6. Глухая втулочная муфта

Определим размеры муфты:


Заключение

В данном курсовом проекте был рассчитан привод вращательного движения.

Был выбран двигатель постоянного тока БК 1324, рассчитано передаточное отношение. Исходя из передаточного числа, был выбран трёхступенчатый редуктор.

Произведён расчет параметров зубчатых зацеплений, диаметров валов, подшипников скольжения, муфтового сопряжения двигателя и редуктора.

Был так же проведен расчет кинематической погрешности и мертвого хода редуктора.  

Разработана документация (сборочный чертеж редуктора, сборочный чертеж привода, а также рабочие чертежи водила и зубчатого колеса).


Список использованной литературы

 

  1.  Анурьев В. И. Справочник конструктора-машиностроителя: В 3 т. – 8-е издание., перераб. и доп. Под ред. И. Н. Жестковой. – М.: Машиностроение, 2003.
  2.  Атлас конструкций элементов приборных устройств: Учеб. пособие для студентов приборостроительных специальностей вузов/ А. А. Бурцев, А. И. Еремеев, Ю. И. Кокорев и др.: Под ред. О. Ф. Тищенко. – Машиностроение, 1982. – 116 с., ил.
  3.  Егоров О. Д., Подураев Ю. В. Конструирование мехатронных модулей: Учебник. – М.: ИЦ МГТУ «СТАНКИН», 2004. – 360с.: ил.
  4.  Иванов М. Н. Детали машин: Учеб. для студентов высш. техн. учеб. заведений. – 5-е изд., перераб. – М.: Высш. шк., 1991. – 383 с.: ил.
  5.  Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учеб. пособие для приборостроит. спец. вузов / Под ред. Ю.А. Дружинина. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1991.
  6.  Первицкий Ю. Д. Расчет и конструирование точных механизмов. Учебное пособие для вузов. Изд. 2-е, доп. И переработ. Л., «Машиностроение», 1976.
  7.  Элементы приборных устройств (Основной курс): Учеб. пособие для студентов вузов. В 2-х ч. Ч. 1,2. Детали, соединения и передачи / Тищенко О.Ф., Киселев Л.Т., Коваленко А.П. и др.; Под ред. О.Ф. Тищенко. – М.: Высш. шк., 1982.


Изм.

Лист

№ докум.

Подпись

Дата

Лист

Разраб.

Провер.

Реценз.

Н. Контр.

Утверд.

Привод вращательного движения

Лит.

истов

КурскГТУ

Изм.

Лист

№ докум.

Подпись

Дата

Лист

4

Изм.

Лист

№ докум.

Подпись

Дата

Лист

5

Изм.

Лист

№ докум.

Подпись

Дата

Лист

6

Изм.

Лист

№ докум.

Подпись

Дата

Лист

7

Изм.

Лист

№ докум.

Подпись

Дата

Лист

8

Изм.

Лист

№ докум.

Подпись

Дата

Лист

9

Изм.

Лист

№ докум.

Подпись

Дата

Лист

10

Изм.

Лист

№ докум.

Подпись

Дата

Лист

11

Изм.

Лист

№ докум.

Подпись

Дата

Лист

12

Изм.

Лист

№ докум.

Подпись

Дата

Лист

13

Изм.

Лист

№ докум.

Подпись

Дата

Лист

14

Изм.

Лист

№ докум.

Подпись

Дата

Лист

15

Изм.

Лист

№ докум.

Подпись

Дата

Лист

16

Изм.

Лист

№ докум.

Подпись

Дата

Лист

17

Изм.

Лист

№ докум.

Подпись

Дата

Лист

18

Изм.

Лист

№ докум.

Подпись

Дата

Лист

19

Изм.

Лист

№ докум.

Подпись

Дата

Лист

20

3

Лист

Дата

Подпись

№ докум.

Лист

Изм.


 

А также другие работы, которые могут Вас заинтересовать

4995. Методы стратегического анализа. Учебное пособие 805.09 KB
  Введение Развитие рыночных отношений делает необходимым изменение сложившихся стереотипов хозяйствования и характера управления. Они все больше требуют от руководителей умения видеть перспективы и принимать обоснованные стратегические решения. И в п...
4996. Ринок фінансових послуг. Навчальний посібник 223.61 KB
  Дисципліна Ринок фінансових послуг є однією з базових для підготовки спеціалістів та магістрів зі спеціальності Фінанси. МЕТА дисципліни: засвоєння знань з теоретичних та практичних аспектів управління фінансами за допомогою фінансових посеред...
4997. Определение грузоподъемности башенного крана 1.52 MB
  Определение грузоподъемности башенного крана. Варианты заданий № п/п Показатели Варианты заданий по последней цифре шифра 1 Марка башенного крана БК - 250 2 Расстояние от оси вращения крана до центра тяжести подвешенного груза а, м...
4998. Выбор двигателя и редуктора для электромеханических систем постоянного тока 304 KB
  Выбор двигателя и редуктора для электромеханических систем постоянного тока Выбор двигателя и редуктора для ЭМС. В следящих системах мощностью несколько сот ватт и выше применяются двигатели постоянного тока независимого возбуждения с регулиро...
4999. Надежность систем автоматического управления 231 KB
  Надежность систем автоматического управления Введение Расчеты надежности автоматизированных систем управления относятся к категории наиболее сложных расчетов. Им должны предшествовать: Уяснение принципа работы и физической сущности явлений элемен...
5000. Рынок: сущность. Противоречия рынка 145.5 KB
  Введение Современная экономика развитых стран носит рыночный характер. Рыночная система оказалась наиболее эффективной и гибкой для решения основных экономических проблем. Она формировалась не одно столетие, приобрела цивилизованные формы, и, по все...
5001. Система учета затрат direct costing и условия ее наиболее эффективного применения на предприятии 130 KB
  Система учета затрат directcosting и условия ее наиболее эффективного применения на предприятии Введение В современной обстановке перехода к рынку, постоянно необходимо проводить анализ деятельности фирмы для принятия управленческих решений. Д...
5002. Правовые и профессионально-этические регуляторы в журналистике 185.5 KB
  Правовые и профессионально-этические регуляторы в журналистике Введение Средства массовой информации и коммуникации часто вызывают полемику в обществе. Вопросы массовых коммуникаций важны потому, что прямо или косвенно оказывают влияние на жизни люд...