872

Анализ свойств линейной непрерывной статической системы

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчет передаточной функции замкнутой системы по управлению. Исходная структурная схема (f=0). Элементарные правила преобразования структурных схем. Алгоритм преобразования для многоконтурных систем. Заменяем последовательное соединение в прямой цепи. Расчет передаточной функции по возмущению (U=0). Определение устойчивости замкнутой системы по теореме Ляпунова.

Русский

2013-01-06

376 KB

26 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДВРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ГЕОЛОГИИ И НЕФТЕГАЗОДОБЫЧИ

Кафедра АВТ

Контрольная работа 

по дисциплине: теория автоматического управления

«Анализ свойств линейной непрерывной статической системы»

Выполнил:

студент группы АТПзс-10-1

Миргородский Д.М.

Проверил:

доцент, к.т.н.

Макарова Л.Н.

Тюмень 2012

Дано:

Структурная схема:

Элементарные звенья:

1) Дифференцирующее;

2) Апериодическое;

3) Пропорциональное;

4) Интегрирующее.

Значения параметров:

1) K1=10;

T1=0,1;

ξ1=0,4;

2) K2=5;

T2=0,4;

ξ2=0,2;

3) K3=12;

T3=0,2;

ξ3=0,2;

4) K4=8;

T4=0,01;

ξ4=0,1.

Значения параметров:

K=25;

a0=0,024;

a1=2,61;

a2=22,82;

a3=1.

Для заданной структурной схемы провести ее анализ, рассчитать передаточные функции по управлению и возмущению. Определить устойчивость замкнутой системы по управлению: по теореме Ляпунова, по критерию Гурвица и по критерию Найквиста.

Исходная структурная схема:

W1(p) – дифференцирующее звено:

W1(p) = T1p = 0,1p;

W2(p) – апериодическое звено:

W3(p) – пропорциональное звено:

W3(p) = K3 =12;

W4(p) – интегрирующее звено:

1 Анализ структурной схемы

Структурная схема состоит из элементарных звеньев.

Элементарное звено – линейная непрерывная система, имеющая своим описанием дифференциальное уравнение не выше второго порядка.

Поэтому данная система является линейной непрерывной детерминированной статической.

Вектор состояния X.

Система имеет два вектора воздействия:

U – управление;

f – возмущение.

Система является многоконтурной, так как после обрыва одной обратной связи, в ней остаются другие обратные связи.

Соединение называется соединением с обратной связью, если весь сигнал или его часть с выхода подается обратно на вход.

Обратная связь, охватывающая всю систему, называется глобальной.

Обратная связь, охватывающая часть элементов или один элемент системы, называется местной или локальной.

Так как имеется два воздействия и один выход, то передаточную функцию будем строить по управлению и по возмущению на основании принципа суперпозиции.

Принцип суперпозиции – реакция системы на сумму воздействий равна сумме реакций на каждое воздействие в отдельности.

2 Расчет передаточной функции замкнутой системы по управлению

2.1 Исходная структурная схема (f=0)

2.2 Элементарные правила преобразования структурных схем

1. Последовательное соединение звеньев – сигнал с предыдущего подается на последующий элемент.

U1(p) = U0(p)·W1(p)

X(p) = U1(p) ·W2(p) = U0(p) ·W2(p)·W1(p)

2. Параллельно – согласное соединение звеньев.

X(p) = X1(p) +X2(p)

X1(p) = U(p) ·W1(p)

X2(p) = U(p) ·W2(p)

X(p) = U(p) (W1(p)+ W2(p))

3. Параллельно – встречное соединение (соединение с обратной связью).

Последовательность элементов от входа до выхода называется прямой цепью.

Последовательность элементов от входа до обрыва обратной связи называется разомкнутой цепью.

Если в цепи обратной связи нет элементов, то ее называют единичной.

X1(p) = U0(p) –U1(p)

U1(p) = X(p) ·W2(p)

X(p) = X1(p) ·W1(p)

X(p) = U0(p) ·W1(p) – X(p) ·W1(p) ·W2(p)

X(p)(1+ W1(p) ·W2(p)) = U0(p) ·W1(p)

2.3 Алгоритм преобразования для многоконтурных систем

1) Избавиться от локальных обратных связей до тех пор, пока система не станет одноконтурной.

2) Применяя правила преобразований к одноконтурной системе рассчитать эквивалентную передаточную функцию.

2.4 Передаточная функция

Передаточная функция – отношение изображения выходного сигнала к изображению входного сигнала при нулевых начальных условиях.

2.5 Расчет передаточной функции

2.5.1 Преобразовываем локальную обратную связь и последовательное соединение

sys1 = tf([0.1 0],[1])

sys2 = tf([5],[0.4 1])

sys3 = tf([12],[1])

sys4 = tf([8],[1 0])

sys5 = feedback(sys1,sys4)

sys6 = series(sys2,sys3)

2.5.2  Заменяем последовательное соединение в прямой цепи

sys7 = series(sys5,sys6)

2.5.3 Передаточная функция замкнутой системы по управлению

sys8 = feedback(sys7,1)

3. Расчет передаточной функции по возмущению (U=0)

3.1 Исходная структурная схема (f=0)

3.2 Расчет передаточной функции

3.2.1 Преобразовываем локальную обратную связь

sys9 = feedback(sys1,sys4)

3.2.2  Заменяем последовательное соединение в прямой цепи

sys10 = series(sys2,sys3)

3.2.3 Передаточная функция замкнутой системы по возмущению

sys11 = feedback(sys10,sys9)

4 Определение устойчивости замкнутой системы (если задана передаточная функция разомкнутой системы)

4.1 Исходная структурная схема

4.2 Определение устойчивости замкнутой системы по теореме Ляпунова

4.2.1 Определение устойчивых, неустойчивых, безразлично –  устойчивых систем

Линейная система называется устойчивой, если после окончания воздействия она возвращается в исходное состояние с точностью до изменений.

Линейная система называется неустойчивой, если после окончания воздействия она как угодно далеко отклоняется от исходного состояния.

Линейная система называется безразлично – устойчивой, если после окончания воздействия она занимает некоторое установившееся положение, отличное от исходного.

4.2.2 Необходимый признак устойчивости

Линейная непрерывная система может быть устойчива, если все коэффициенты характеристического уравнения положительны.

Знаменатель передаточной функции называется характеристическим уравнением. Корни этого характеристического уравнения определяют решение линейного однородного дифференциального уравнения.

sys = tf([25],[0.024 2.61 22.82 1])

feedback(sys,1)

Система может быть устойчива.

4.2.3 Теорема Ляпунова

Для устойчивости линейной непрерывной системы необходимо и достаточно, чтобы корни характеристического уравнения имели отрицательные действительные части.

p=[0.024 2.61 22.82 26]

roots(p)

-99.2829

-8.1240

-1.3431

Система устойчива, так как все корни уравнения левые.

4.3 Устойчивость замкнутой системы по критерию Гурвица

Линейная непрерывная система устойчива, если все определители, построенные от верхнего левого угла положительны.

Считаем до определителя n–1 порядка. В нашем случае считаем до второго порядка: 3–1=2.

Система устойчива, так как все определители положительны.

5 Определение устойчивости замкнутой системы по критерию Найквиста

Критерий Найквиста – частотный критерий устойчивости, позволяет определять устойчивость замкнутой системы по графику АФЧХ разомкнутой системы.

5.1 Передаточная функция разомкнутой системы

Передаточную функцию разомкнутой системы можно определить как отношение изображений управляемой величины и ошибки при нулевых начальных значениях и возмущающих воздействиях, равных нулю.

5.2 Устойчивость разомкнутой системы (по теореме Ляпунова)

P=[0.024 2.61 22.82 1]

roots(p)

-99.1659

-9.5400

-0.0440

Система устойчива, так как все корни уравнения левые.

Если разомкнутая система устойчива, то для устойчивости замкнутой системы необходимо и достаточно, чтобы АФЧХ разомкнутой системы не охватывала точку (-1;j0).

5.3 АФЧХ разомкнутой системы

sys = tf([25],[0.024 2.61 22.82 1])

nyquist(sys)

Так как АФЧХ разомкнутой системы не охватывает точку (-1;j0), то замкнутая система устойчива.


 

А также другие работы, которые могут Вас заинтересовать

70151. Отопление и вентиляция жилого четырехэтажного здания в г. Минусинск 1.05 MB
  Район постройки г. Минусинск Число этажей- 4 Расчетная температура наружного воздуха обеспеченностью 0,92 t=-42 Температура холодных суток t=-43 Температура среднего отопительного периода t=-9,5 Средняя скорость ветра за январь...
70152. Деревянный каркас одноэтажного производственного здания 771.5 KB
  Ограждающей конструкцией покрытия является утеплённая клеефанерная плита с одной верхней обшивкой. Размер панели в плане 1518-4180 мм. Обшивка плиты выполнена из фанеры клееной повышенной водостойкости марки ФСФ ГОСТ 3916.2-96, порода древесины шпона фанеры – лиственница.
70154. Проектирование электрической печи сопротивления СШЗ-15.15/9 497 KB
  Назначение: втулки пальцы шестерни валики толкатели и другие цементируемые детали к которым предъявляется требование высокой поверхностной твердости при невысокой прочности сердцевины детали работающие в условиях износа при трении.
70155. Планировка участка по ремонту ДВС 4.4 MB
  Целью данного дипломного проекта является оценка существующей структуры автосервиса, освоение навыков организации и управления предприятием, анализ существующей технической базы обслуживания и ремонта автомобилей с внесением новых конструкторских разработок. В рамках данного проекта предстоит рассчитать городское СТО с детальной разработкой участка по ремонту двигателя.
70156. Планирование кадров предприятия и его подбор 133.5 KB
  Планирование сокращения или высвобождения персонала. Термин планирование персонала включает в себя все проблемы сферы персонала которые могут возникнуть в будущем. Планирование персонала во-первых служит целевому планированию потребностей в области персонала и во-вторых планированию...
70157. Товар и товарная политика 215 KB
  Предпринимательская деятельность является эффективной когда производимый фирмой товар или оказываемая ею услуга находит спрос на рынке а удовлетворение определенных потребностей покупателей благодаря приобретению данного товара или услуги приносит прибыль.
70158. ПРОЕКТИРОВАНИЕ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ ТОМСК – КРАСНОЯРСК 971 KB
  Волоконно-оптические системы передачи благодаря уникальным возможностям по пропускной способности и затуханию волоконных световодов и успехам в технологии элементов волоконно-оптических систем передачи являются наиболее перспективными информационными системами.
70159. Разработка участка текущего ремонта двигателей автомобилей 519 KB
  ТО - это комплекс операций или операция по поддержанию работоспособности или исправности автомобиля при использовании по назначению при стоянке хранении или транспортировании. Ремонт это комплекс операций по восстановлению работоспособности и восстановлению ресурса автомобиля или его составных частей.