872

Анализ свойств линейной непрерывной статической системы

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчет передаточной функции замкнутой системы по управлению. Исходная структурная схема (f=0). Элементарные правила преобразования структурных схем. Алгоритм преобразования для многоконтурных систем. Заменяем последовательное соединение в прямой цепи. Расчет передаточной функции по возмущению (U=0). Определение устойчивости замкнутой системы по теореме Ляпунова.

Русский

2013-01-06

376 KB

27 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДВРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ГЕОЛОГИИ И НЕФТЕГАЗОДОБЫЧИ

Кафедра АВТ

Контрольная работа 

по дисциплине: теория автоматического управления

«Анализ свойств линейной непрерывной статической системы»

Выполнил:

студент группы АТПзс-10-1

Миргородский Д.М.

Проверил:

доцент, к.т.н.

Макарова Л.Н.

Тюмень 2012

Дано:

Структурная схема:

Элементарные звенья:

1) Дифференцирующее;

2) Апериодическое;

3) Пропорциональное;

4) Интегрирующее.

Значения параметров:

1) K1=10;

T1=0,1;

ξ1=0,4;

2) K2=5;

T2=0,4;

ξ2=0,2;

3) K3=12;

T3=0,2;

ξ3=0,2;

4) K4=8;

T4=0,01;

ξ4=0,1.

Значения параметров:

K=25;

a0=0,024;

a1=2,61;

a2=22,82;

a3=1.

Для заданной структурной схемы провести ее анализ, рассчитать передаточные функции по управлению и возмущению. Определить устойчивость замкнутой системы по управлению: по теореме Ляпунова, по критерию Гурвица и по критерию Найквиста.

Исходная структурная схема:

W1(p) – дифференцирующее звено:

W1(p) = T1p = 0,1p;

W2(p) – апериодическое звено:

W3(p) – пропорциональное звено:

W3(p) = K3 =12;

W4(p) – интегрирующее звено:

1 Анализ структурной схемы

Структурная схема состоит из элементарных звеньев.

Элементарное звено – линейная непрерывная система, имеющая своим описанием дифференциальное уравнение не выше второго порядка.

Поэтому данная система является линейной непрерывной детерминированной статической.

Вектор состояния X.

Система имеет два вектора воздействия:

U – управление;

f – возмущение.

Система является многоконтурной, так как после обрыва одной обратной связи, в ней остаются другие обратные связи.

Соединение называется соединением с обратной связью, если весь сигнал или его часть с выхода подается обратно на вход.

Обратная связь, охватывающая всю систему, называется глобальной.

Обратная связь, охватывающая часть элементов или один элемент системы, называется местной или локальной.

Так как имеется два воздействия и один выход, то передаточную функцию будем строить по управлению и по возмущению на основании принципа суперпозиции.

Принцип суперпозиции – реакция системы на сумму воздействий равна сумме реакций на каждое воздействие в отдельности.

2 Расчет передаточной функции замкнутой системы по управлению

2.1 Исходная структурная схема (f=0)

2.2 Элементарные правила преобразования структурных схем

1. Последовательное соединение звеньев – сигнал с предыдущего подается на последующий элемент.

U1(p) = U0(p)·W1(p)

X(p) = U1(p) ·W2(p) = U0(p) ·W2(p)·W1(p)

2. Параллельно – согласное соединение звеньев.

X(p) = X1(p) +X2(p)

X1(p) = U(p) ·W1(p)

X2(p) = U(p) ·W2(p)

X(p) = U(p) (W1(p)+ W2(p))

3. Параллельно – встречное соединение (соединение с обратной связью).

Последовательность элементов от входа до выхода называется прямой цепью.

Последовательность элементов от входа до обрыва обратной связи называется разомкнутой цепью.

Если в цепи обратной связи нет элементов, то ее называют единичной.

X1(p) = U0(p) –U1(p)

U1(p) = X(p) ·W2(p)

X(p) = X1(p) ·W1(p)

X(p) = U0(p) ·W1(p) – X(p) ·W1(p) ·W2(p)

X(p)(1+ W1(p) ·W2(p)) = U0(p) ·W1(p)

2.3 Алгоритм преобразования для многоконтурных систем

1) Избавиться от локальных обратных связей до тех пор, пока система не станет одноконтурной.

2) Применяя правила преобразований к одноконтурной системе рассчитать эквивалентную передаточную функцию.

2.4 Передаточная функция

Передаточная функция – отношение изображения выходного сигнала к изображению входного сигнала при нулевых начальных условиях.

2.5 Расчет передаточной функции

2.5.1 Преобразовываем локальную обратную связь и последовательное соединение

sys1 = tf([0.1 0],[1])

sys2 = tf([5],[0.4 1])

sys3 = tf([12],[1])

sys4 = tf([8],[1 0])

sys5 = feedback(sys1,sys4)

sys6 = series(sys2,sys3)

2.5.2  Заменяем последовательное соединение в прямой цепи

sys7 = series(sys5,sys6)

2.5.3 Передаточная функция замкнутой системы по управлению

sys8 = feedback(sys7,1)

3. Расчет передаточной функции по возмущению (U=0)

3.1 Исходная структурная схема (f=0)

3.2 Расчет передаточной функции

3.2.1 Преобразовываем локальную обратную связь

sys9 = feedback(sys1,sys4)

3.2.2  Заменяем последовательное соединение в прямой цепи

sys10 = series(sys2,sys3)

3.2.3 Передаточная функция замкнутой системы по возмущению

sys11 = feedback(sys10,sys9)

4 Определение устойчивости замкнутой системы (если задана передаточная функция разомкнутой системы)

4.1 Исходная структурная схема

4.2 Определение устойчивости замкнутой системы по теореме Ляпунова

4.2.1 Определение устойчивых, неустойчивых, безразлично –  устойчивых систем

Линейная система называется устойчивой, если после окончания воздействия она возвращается в исходное состояние с точностью до изменений.

Линейная система называется неустойчивой, если после окончания воздействия она как угодно далеко отклоняется от исходного состояния.

Линейная система называется безразлично – устойчивой, если после окончания воздействия она занимает некоторое установившееся положение, отличное от исходного.

4.2.2 Необходимый признак устойчивости

Линейная непрерывная система может быть устойчива, если все коэффициенты характеристического уравнения положительны.

Знаменатель передаточной функции называется характеристическим уравнением. Корни этого характеристического уравнения определяют решение линейного однородного дифференциального уравнения.

sys = tf([25],[0.024 2.61 22.82 1])

feedback(sys,1)

Система может быть устойчива.

4.2.3 Теорема Ляпунова

Для устойчивости линейной непрерывной системы необходимо и достаточно, чтобы корни характеристического уравнения имели отрицательные действительные части.

p=[0.024 2.61 22.82 26]

roots(p)

-99.2829

-8.1240

-1.3431

Система устойчива, так как все корни уравнения левые.

4.3 Устойчивость замкнутой системы по критерию Гурвица

Линейная непрерывная система устойчива, если все определители, построенные от верхнего левого угла положительны.

Считаем до определителя n–1 порядка. В нашем случае считаем до второго порядка: 3–1=2.

Система устойчива, так как все определители положительны.

5 Определение устойчивости замкнутой системы по критерию Найквиста

Критерий Найквиста – частотный критерий устойчивости, позволяет определять устойчивость замкнутой системы по графику АФЧХ разомкнутой системы.

5.1 Передаточная функция разомкнутой системы

Передаточную функцию разомкнутой системы можно определить как отношение изображений управляемой величины и ошибки при нулевых начальных значениях и возмущающих воздействиях, равных нулю.

5.2 Устойчивость разомкнутой системы (по теореме Ляпунова)

P=[0.024 2.61 22.82 1]

roots(p)

-99.1659

-9.5400

-0.0440

Система устойчива, так как все корни уравнения левые.

Если разомкнутая система устойчива, то для устойчивости замкнутой системы необходимо и достаточно, чтобы АФЧХ разомкнутой системы не охватывала точку (-1;j0).

5.3 АФЧХ разомкнутой системы

sys = tf([25],[0.024 2.61 22.82 1])

nyquist(sys)

Так как АФЧХ разомкнутой системы не охватывает точку (-1;j0), то замкнутая система устойчива.


 

А также другие работы, которые могут Вас заинтересовать

76525. Основные теоретические понятия методики обучения стилистике 25.5 KB
  Выделяют пять стилей из них четыре книжных: научный официальноделовой публицистический художественный и разговорный стиль. Научный стиль Научный стиль один из книжных стилей который используется в научных трудах учебниках и учебных пособиях устных выступлениях на научные темы. В научном стиле можно выделить следующие разновидности: 1 собственно научный стиль. 2 научнопопулярный стиль который присущ текстам предназначенным для популяризации научных знаний.
76526. Виды речевых ошибок: методика работы по их предупреждению и исправлению 29 KB
  Употребление слов в несвойственных им значениях. Повторение однокоренных слов в одном предложении тавтология: Писатель ярко описывает события того дня. Речевая недостаточность возникает в случае когда пропущено нужное слово. Употребление лишних слов.
76527. Отбор теоретических понятий при изучении фонетики, графики и орфоэпии 31 KB
  Необходимо при изучении словообразования: буквы имеющие два один звук. Цель изучения:осознаное усвоение звуковой системы языка; знакомство с орфоэпическими нормами СРЛЯ; формирование орфографических навыков.Задачи:Формирование основных фонетических понятий: звук слог ударение интонация;Дать представление о русской графике как науке устанавливающей общие принципы передачи звучащей речи на письме;Развивать фонематический слух учащегося и на этой основе формировать орфографическую грамотность школьника;Закрепить умение обозначить звуки...
76529. Русский язык как предмет изучения. Место русского языка в ряду других учебных предметов. Межпредметные связи на уроках русского языка 34.5 KB
  Место русского языка в ряду других учебных предметов. Межпредметные связи на уроках русского языка.На каждом уровне выделяются след основные линии: система языка или знания о языке сформированные в виде понятий способов действия а также владения самим языком и его нормами. В содержание стандарта случены отдельные сведения которые отсутствуют в современных учебниках но в то же время представляют собой ближайшую перспективу для совершенствования курса родного языка.
76530. Цели и задачи обучения русскому языку. Структура и содержание курса русского языка в средней школе 29.5 KB
  Языковая часть курса в каждой теме представлена тремя компонентами: а сведения о языке подлежащие усвоению; б умения и навыки в области культуры речи языкового анализа практические умения общеучебные умения; в способ деятельности через учебник В структуре школьной программы по русскому языку выделяются два уровня: уровень программы в целом и уровень программы каждого класса. Структура программы в целом делится на органически связанные но самостоятельные программы для каждого класса. Структура программы второго уровня уровня каждого...
76531. Методическая система, содержание ее компонентов 53 KB
  Классификация Текучева основа: использование разных источников знаний: Рассказ или слово учителя; Беседа; Разбор; Наблюдение. Классификация Лидия Прокофьевна Федоренко основа: использование разных источников знаний 3 группы методов обучения. пунктуационный диктант контрольный контроль знаний и обучающие...