87368

Основы освещения

Лекция

Безопасность труда и охрана жизнедеятельности

Остротой зрения называется способность глаза различать мелкие детали предметов. Она определяется величиной, обратной тому минимальному размеру предмета, при котором он различим глазом. Острота зрения зависит от уровня освещенности, расстояния до рассматриваемого предмета и его положения относительно наблюдателя, возраста

Русский

2015-04-19

202.5 KB

0 чел.

МОСКОВСКИЙ  ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ  ИНСТИТУТ

Тверской филиал

ФОНДОВАЯ ЛЕКЦИЯ

по учебной дисциплине

Безопасность жизнедеятельности

 

Основы освещения

Л. В. Пьянова

Тверь 2014

Фондовая лекция «Основы освещения» обсуждена и рекомендована к изданию на заседании кафедры общегуманитарных дисциплин  ТФ МГЭИ. Протокол № 2  от «15»  октября 2014 года.

Рецензенты:

кандидат химических наук, доцент

Мухометзянов А. Г.

 

Пьянова Л. В.  Основы освещения: Фондовая лекция. -  Тверь: Изд-во ТФ МГЭИ, 2014. 36 стр.

 

Фондовая лекция «Основы освещения» предназначена для студентов очной  и  заочной  формы   обучения   направления   030300.62     «Психология»,  080100.62 «Экономика», 080200.62 «Менедждмент», 030900.62      «Юриспруденция» квалификация (степени) выпускника бакалавр Тверского филиала МГЭИ и может оказаться полезной в самостоятельном изучении проблематики безопасности жизнедеятельности человека и среды его обитания, охраны труда, экологической  безопасности.

Л. В. Пьянова

Московский гуманитарно-экономический институт

2014 г.

2

ОГЛАВЛЕНИЕ

Введение.......................................................................................................................3

1. Основные светотехнические величины и единицы..............................................6

2. Классификация видов и систем производственного освещения......................11 

3.  Основные требования к производственному освещению................................15  

4.  Электрические источники света.........................................................................18  

5.  Нормирование искусственного  и  естественного       освещения...................19

6.  Эксплуатация осветительных установок. Контроль освещения.....................30

7.  Измерение освещенности на рабочем месте.....................................................32

Заключение.................................................................................................................33

Рекомендуемая  литература......................................................................................35

 

 

 

 

 

  

 

 

 

3

Введение

Пространственные характеристики зрительного анализатора определяются воспринимаемыми глазом размерами предметов и их расположением в пространстве. К ним относятся: острота зрения, поле зрения и объем зрительного восприятия.

Остротой зрения называется способность глаза различать мелкие детали предметов. Она определяется величиной, обратной тому минимальному размеру предмета, при котором он различим глазом. Острота зрения зависит от уровня освещенности, расстояния до рассматриваемого предмета и его положения относительно наблюдателя, возраста. Так, например, острота зрения под углом 10 градусов в 10 раз меньше, а под углом 30 градусов - в 23 раза меньше, чем прямо перед собой.

Важной характеристикой зрительного восприятия является его объем: число объектов, которые может охватить человек в течение одной зрительной фиксации. Обнаружено, что при предъявлении не связанных между собой объектов объем восприятия составляет 4-8 элементов. Последние исследования показывают, что объем воспроизведенного материала определяется не столько объемом восприятия, сколько объемом памяти.

Условно все поле зрения можно разбить на три зоны: центрального зрения (4 градуса), где возможно наиболее четкое различение деталей; ясного видения (30-35 градусов), где при неподвижном глазе можно опознать предмет без различных мелких деталей; периферического зрения (75-90 градусов), где предметы обнаруживаются, но не опознаются. Зона периферического зрения играет большую роль при ориентации во внешней обстановке.

Большую роль в процессе зрительного восприятия играют движения глаз. Они делятся на два больших класса: поисковые (установочные) и гностические (познавательные). С помощью поисковых движений осуществляется поиск заданного объекта, установка глаза в исходную позицию и корректировка этой позиции.  Длительность  поисковых  движений  определяется углом, на который

4

перемещается взор.

К гностическим относятся движения, участвующие в обследовании объекта, его опознавании и различении его деталей. Основную информацию глаз получает во время фиксации, т.е. во время относительно неподвижного положения глаз, когда взор пристально устремлен на объект. Во время скачка глаз почти не получает никакой информации. Результаты исследований показывают, что общее время фиксаций составляет 90-95% от времени зрительного восприятия.

Фиксации неотделимы от микродвижений глаз. В ряде опытов при помощи специального устройства изображение объекта стабилизировалось относительно сетчатки глаза, т.е. изображение не перемещалось по сетчатке. Уже через 2-3 секунды после стабилизации человек переставал видеть объект. Следовательно, движения глаз являются необходимым условием зрительного восприятия.

Временные характеристики зрительного анализатора определяются временем, необходимым для возникновения зрительного ощущения при тех или иных условиях работы оператора. К ним относятся: латентный (скрытый) период зрительной реакции, длительность инерции ощущения, критическая частота мельканий, время адаптации, длительность информационного поиска.

Латентным периодом называется промежуток времени от момента подачи сигнала до момента возникновения ощущения. Это время зависит от интенсивности сигнала (так называемый закон силы: чем сильнее раздражитель, тем реакция на него короче), его значимости (реакция на значимый для оператора сигнал короче, чем сигналы, не имеющие значения для оператора), сложности работы оператора (чем сложнее выбор нужного сигнала среди остальных, тем реакция на него будет больше), возраста и других индивидуальных особенностей человека.

Рассмотренные особенности работы зрительного анализатора следует учитывать  при  организации  деятельности  оператора.   Прежде   всего,   время

5

действия сигнала не должно быть меньше времени инерции зрения, которое зависит от яркости и угловых размеров предметов. В противном случае воспринимаемый контраст и интенсивность сигнала будут во столько раз меньше действительных значений, во сколько время сигнала меньше времени инерции.

Если же возникает необходимость в последовательном реагировании оператора на появляющиеся сигналы, то период их следования должен быть не меньше времени сохранения ощущения, равного 0,2-0,5 сек. В противном случае будет замедляться точность и скорость реагирования, поскольку время перехода нового сигнала в зрительной системе оператора еще будет оставаться в образе предыдущего сигнала.

Частота мелькания зависит от яркости, размеров и конфигурации знаков.

Вопрос о частоте мельканий имеет большое значение при решении двух видов инженерных задач. В тех случаях, когда необходимо, чтобы мелькания не замечались (например, при проектировании изображения на экран, в технике кино и телевидения), частота смены информации должна составлять не менее 40 Гц. При необходимости использовать мерцание для кодирования информации (например, для привлечения внимания оператора) следует иметь в виду,   что   наименьшее   зрительное   утомление   будет при частоте мельканий

3 - 8 Гц.

К временным характеристикам зрительного анализатора относится и время адаптации. Различают две формы адаптации: темновую (при переходе от света к темноте) и светловую (при обратном переходе).

Время адаптации зависит от ее вида и составляет десятки минут при темновой адаптации и единицы, и даже доли минут, при cветловой.

Для некоторых видов операторской деятельности процесс восприятия сводится к информационному поиску - нахождению на устройстве отображения объекта с заданными признаками. Такими признаками может быть проблесковое  свечение,  особая  форма  или  цвет  объекта, отклонение стрелки

6

прибора за допустимое значение и т.д. Задача оператора заключается в нахождении такого объекта и характеризуется временем, затраченным на поиск.

Основные требования к организации информационного поля с точки зрения минимизации поиска:

1. элементы поля следует располагать так, чтобы в объем фиксации, ограниченной зоной 10 градусов, попадало не более чем 4-8 объектов;

2. следует по возможности уменьшать объем поля, не допуская нахождения в нем ненужных элементов;

3. искомые элементы следует выделять таким образом: чтобы обеспечить наименьшее время фиксации, наилучшим является выделение искомого элемента другим цветом или с помощью светового маркера; более плохие результаты получаются при его выделении проблесковым свечением или изменением размера и яркости (хотя эти способы более просты с точки зрения их технической реализации).

1. Основные светотехнические величины и единицы

Организация рационального освещения рабочих мест — один из основных вопросов охраны труда. При неудовлетворительном освещении резко снижается производительность труда, возможны несчастные случаи, появление близорукости, быстрая утомляемость.

В зависимости от источника света производственное освещение может быть трех видов: естественное, искусственное и совмещенное.

Свет обеспечивает связь организма с внешней средой, обладает высоким биологическим и тонизирующим действием. Зрение — главный «информатор» человека; около 90% всей информации о внешнем мире поступает в наш мозг через глаза.

Производственное освещение, правильно спроектированное и выполненное, предназначено для решения следующих вопросов: оно улучшает

7

условия зрительной работы, снижает утомление, способствует повышению производительности труда и качества выпускаемой продукции; благоприятно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего; повышает безопасность труда и снижает травматизм на производстве.

К современному промышленному освещению предъявляются высокие требования не только гигиенического, но и технико-экономического характера.

Часть электромагнитного спектра с длинами волн от 10 до 340 000 нм называется оптической областью спектра, которая делится на инфракрасное излучение с длинами волн от 340 000 нм до 770 нм, видимое излучение от 770 до 380 нм, ультрафиолетовое излучение — от 380 до 10 нм.

В пределах этой видимой части спектра лучистой энергии излучения различной длины волн вызывают и различные световые ощущения — от фиолетового (λ = 380 нм) до красного — (λ = 750 нм) цветов.

Совершенство производственного освещения характеризуется количественными и качественными показателями.

Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся световой поток, сила света, освещенность, яркость.

Световой поток F — это часть лучистого потока, которая воспринимается зрением человека как свет (измеряется в люменах — лм). Световой поток F определяется как мощность лучистой энергии, оцениваемой по световому ощущению, которое она производит на человеческий глаз. За единицу светового потока принят люмен (лм).

Световой поток определяется как величина не только физическая, но и физиологическая, поскольку измерение ее основывается на зрительном восприятии.

Все источники света, в том числе и осветительные приборы, излучают световой поток в пространство неравномерно, поэтому вводится величина

8

пространственной плотности светового потока — сила света J, которой называется отношение светового потока к телесному углу, в пределах которого световой поток распространяется и равномерно распределяется:

Jа = dF/dω,

где Jа — сила света под углом a; dF — световой поток, равномерно распределяющийся в пределах телесного угла dω.

За единицу силы света принята кандела (кд). Одна кандела — сила света, испускаемого с поверхности площадью 1/600000 м2 полного излучателя (государственный световой эталон) в перпендикулярном направлении при температуре затвердевания платины (2046,65° К) при давлении 101325 Па.

Освещенность Е — плотность светового потока на освещаемой поверхности:

Е=dF/dS

где dS — площадь поверхности, на которую падает световой поток dF.

3а единицу освещенности принят люкс (лк) —при световом потоке в 1 лм на площади в 1 м2.

Яркость поверхности L — отношение силы света, излучаемого в рассматриваемом направлении, к площади светящейся поверхности, кд/м2.

Яркостью поверхности L в данном направлении называется отношение силы света, излучаемой поверхностью в этом направлении, к проекции светящейся поверхности на плоскость перпендикулярную данному направлению:

La=dJa/dSсosa,

где dJa — сила света, излучаемого поверхностью dS в направлении а.

Коэффициент отражения р характеризует способность поверхности отражать падающий на нее световой поток. Определяется как отношение отраженного от поверхности светового потока Fотр к падающему на нее световому потоку Fпад.

 К основным качественным показателям освещения относятся: фон,

9

контраст объекта с фоном, видимость, показатель ослепленности и дискомфорта, коэффициент пульсации.

Фон — поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается; характеризуется коэффициентом отражения, зависящим от цвета и фактуры поверхности, значения которого лежат в пределах от 0,02 до 0,95.

При коэффициенте отражения поверхности более 0,4 фон считается светлым; от 0,2 до 0,4 — средним и менее 0,2 — темным.

Контраст объекта с фоном К характеризуется соотношением яркостей рассматриваемого объекта (точка, линия, знак, пятно, трещина, риска, раковина или другие элементы, которые требуется различить в процессе работы) и фона.    

При коэффициенте отражения поверхности более 0,4 фон считается светлым; от 0,2 до 0,4 — средним и менее 0,2 — темным.

Контраст объекта с фоном считается большим при значениях К более 0,5 (объект и фон резко отличаются по яркости), средним при значениях К от 0,2 до 0,5 (объект и фон заметно отличаются по яркости) и малым при значениях К менее 0,2 (объект и фон мало отличаются по яркости).

Видимость V характеризует способность глаза воспринимать объект; зависит от освещенности, размера объекта, его яркости, контраста объекта с фоном, длительности экспозиции.

Видимость определяется числом пороговых контрастов в контрасте объекта с фоном:

V=K/Kпор ,

где К — контраст объекта с фоном;

Кпор — пороговый контраст, т. е. наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличимым.

Показатель ослепленности Р — критерий оценки слепящего действия, создаваемого осветительной установкой, значение которого определяется по

10

формуле:

Р=(S-1)1000,

где Р — показатель ослепленности;

S =V1/V2 коэффициент ослепленности;

V1 и V2 — видимость объекта наблюдения соответственно при экранировании и при наличии блеских источников в поле зрения.

Коэффициент пульсации освещенности Кп — критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током.  Коэффициент пульсации освещенности Кп  опаределяется в процентах.

Показатель ослепленности — критерий оценки слепящего действия, создаваемого осветительной установкой.

Основная задача освещения на производстве — создание наилучших условий для видения. Эту задачу возможно решить только осветительной системой, отвечающей следующим требованиям:

- освещенность на рабочем месте должна соответствовать характеру зрительной работы, который определяется тремя параметрами: объектом различения — наименьшим размером рассматриваемого объекта (при работе с приборами — толщина линии градуировки шкалы, при чертежных работах — толщина самой тонкой линии на чертеже и т. п.); фоном — при ρ > 0,4 фон считается светлым, при ρ == 0,2...0,4 — средним и при ρ<0,2 — темным; контрастом объекта с фоном, где Lo и Lф — яркость соответственно объекта и фона (при К>0,5 контраст большой, при К= 0,2 ... 0,5 — средний, при К<0,2 ~-малый);

- необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в пределах окружающего пространства;

- на рабочей поверхности должны отсутствовать резкие тени;

  •       в   поле   зрения   не   должно  быть прямой и отраженной блескости

11

(повышенной яркости светящихся поверхностей, вызывающей ослепление);

- величина освещенности должна быть постоянной во времени;

- следует выбирать оптимальную направленность светового потока и необходимый спектральный состав света;

- все элементы осветительных установок должны быть долговечными, электро- и пожаробезопасными;

  •  установка должна быть удобной и простой в эксплуатации, отвечать требованиям безопасности.

 

2. Классификация видов и систем производственного освещения

В зависимости от источника света производственное освещение может быть двух видов: естественное, создаваемое непосредственно солнечным диском и диффузным светом небесного излучения, и искусственное, осуществляемое электрическими лампами.

 Естественный (солнечный) свет по своему спектральному составу значительно отличается от света, получаемого от электрических источников света. В спектре солнечного света гораздо больше необходимых для человека ультрафиолетовых лучей; для естественного освещения характерна высокая диффузность (рассеянность) света, весьма благоприятная для зрительных условий работы.

 По конструктивным особенностям естественное освещение подразделяется на боковое, осуществляемое через окна в наружных стенах; верхнее, осуществляемое через аэрационные и зенитные фонари, проемы в покрытиях, а также через световые проемы в местах перепадов высот смежных пролетов зданий; комбинированное, когда к верхнему освещению добавляется боковое.

 Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света или для освещения помещения в те часы суток, когда естественный свет отсутствует.

12

 По конструктивному исполнению искусственное освещение может быть двух видов — общее и комбинированное, когда к общему освещению добавляется местное, концентрирующее световой поток непосредственно на рабочих местах  .

 Общее освещение подразделяется на общее равномерное освещение (при равномерном распределении светового потока без учета расположения оборудования) и общее локализованное освещение (при распределении светового потока с учетом расположения рабочих мест).

 Применение одного местного освещения внутри зданий не допускается.

 Чаще всего на производстве рекомендуется применять систему комбинированного освещения там, где выполняются точные зрительные работы (точение, шлифование, отбраковка), где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально (штампы, прессы). Система общего освещения может быть рекомендована в помещениях, где по всей площади выполняются однотипные работы (в литейных, сборочных цехах), а также в административно-конторских, складских помещениях и проходных. Если рабочие места сосредоточены на отдельных участках, например, у конвейеров, разметочных плит, столов ОТК, целесообразно прибегать к локализованному размещению светильников общего освещения.

 По функциональному назначению искусственное освещение подразделяется на следующие виды: рабочее, аварийное, специальное.

 Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы, прохода людей и движения транспорта. Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

 Аварийное освещение для продолжения работы надлежит устраивать в тех случаях, когда внезапное отключение рабочего освещения (при аварии) и связанное  с  этим нарушение нормального обслуживания может вызвать взрыв,

13

пожар, отравление людей, длительное нарушение технологического процесса, нарушение работы таких объектов, как электрические станции, диспетчерские пункты, насосные установки водоснабжения и другие производственные помещения, в которых недопустимо прекращение работ.

 Наименьшая освещенность рабочих поверхностей, требующих обслуживания при аварийном режиме, должна составлять 5% освещенности, нормируемой для рабочего освещения при системе общего освещения, но не менее 2 лк внутри зданий.

 Аварийное освещение для эвакуации надлежит устраивать в местах, опасных для прохода, на лестничных клетках, в производственных помещениях с числом работающих более 50 человек. Оно должно обеспечивать наименьшую освещенность в помещениях на полу основных проходов и на ступенях не менее 0,5 лк, а на открытых территориях — не менее 0,2 лк. Выходные двери помещений общественного назначения, в которых могут находиться одновременно более 100 человек, должны быть отмечены световыми сигналами-указателями.

 Светильники аварийного освещения для продолжения работы присоединяют к независимому источнику питания, а светильники для эвакуации людей — к сети, независимой от рабочего освещения, начиная от щита подстанции.

 Для аварийного освещения следует применять только лампы накаливания и люминесцентные лампы.

 К специальным видам освещения и облучения относятся: охранное, дежурное, бактерицидное, эритемное.

 Для охранного освещения площадок предприятий и дежурного освещения помещений следует по возможности выделять часть светильников рабочего или аварийного освещения.

 Установки эритемного (искусственного ультрафиолетового) облучения должны  предусматриваться в первую очередь на промышленных предприятиях,

14

расположенных за Северным Полярным кругом, а также в средней полосе территории РФ при отсутствии или недостаточном естественном освещении.

 Известно положительное биологическое действие ультрафиолетового облучения на обмен веществ, дыхательные процессы, активизацию кровообращения и другие функции человеческого организма. Максимальное эритемное воздействие оказывает излучение с длиной волны 0,297 мкм.

 Эритемные облучательные установки применяются двух систем: установки длительного действия и установки кратковременного действия (фотарии). Эритемные установки длительного действия могут монтироваться совместно со светильниками рабочего освещения и облучать работающих в течение всего рабочего времени. Облучение в фотариях рабочие проходят до или после работы по 3—5 мин, в связи с этим доза облученности в них в десятки раз больше, чем в эритемных установках длительного действия. Облучение обычно проводят в течение осенне-зимнего и раннего весеннего периодов года.

 Бактерицидное облучение применяется для обеззараживания воздуха в производственном помещении, питьевой воды, продуктов питания. Наибольшей бактерицидной эффективностью обладает ультрафиолетовое излучение с длинами волн 0,254—0,257 мкм, создаваемое специальными лампами.

 Естественное освещение создаётся прямыми солнечными лучами и лучами, рассеянными атмосферой (диффузный свет). Различают три системы естественного освещения: верхнее (фонари, купола); боковое (световые проёмы в стенах); комбинированное. Последнее является наиболее рациональным.

Являясь наиболее благоприятным для зрения, естественное освещение в то же время меняется в помещении в широких пределах в зависимости от времени года, суток, метеоусловий. Поэтому его нельзя характеризовать параметром освещённости на рабочем месте (Е = F/S). За нормируемую величину, характеризующую естественную освещённость, принята относительная величина - коэффициент естественного освещения (КЕО).

15

КЕО = (Ена раб месте/Еснаружи)*100%.

Его минимальное значение нормируется в зависимости от вида и точности работы. Точность работы определяется размерами предмета, с которым человек работает. Чем мельче предмет, тем работа более точная и требует более высокого коэффициента естественной освещённости. КЕО меняется в пределах от 10% до 0,5%.

  3. Основные требования к производственному освещению

 

Создание благоприятных условий труда, исключающих быстрое утомление зрения, возникновение несчастных случаев и способствующих повышению производительности труда, возможно только осветительной установкой, отвечающей следующим требованиям.

 1. Освещенность на рабочем месте должна соответствовать зрительным условиям труда согласно гигиеническим нормам. Увеличение освещенности рабочей поверхности улучшает видимость объектов за счет повышения их яркости, увеличивает скорость различения деталей, что сказывается на росте производительности труда. Так, при выполнении точных зрительных работ, увеличение освещенности с 50 до 1000 лк позволяет получить прирост производительности труда до 25% и даже при выполнении грубых работ, не требующих зрительного напряжения, увеличение освещенности рабочего места с 50 до 300 лк повышает производительность труда на 5—8%. Однако имеется предел, при котором дальнейшее увеличение освещенности почти не дает эффекта, поэтому необходимо улучшать качественные характеристики освещения.

  1.  Необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в пределах окружающего пространства. Если в поле зрения находятся поверхности, значительно отличающиеся  между  собой  по  яркости,  то при переводе взгляда с ярко

16

освещенной на слабо освещенную поверхность глаз вынужден переадаптироваться, что ведет к утомлению зрения.

Для повышения равномерности естественного освещения больших цехов (литейных, механосборочных) осуществляется комбинированное освещение. Светлая окраска потолка, стен и производственного оборудования способствует созданию равномерного распределения яркости в поле зрения.

3. На рабочей поверхности должны отсутствовать резкие тени. Наличие резких теней создает неравномерное распределение яркостей в поле зрения, искажает размеры и формы объектов различения, в результате повышается утомление, снижается производительность труда. Особенно вредны движущиеся тени, способствующие увеличению травматизма. Тени необходимо устранять или смягчать.

При естественном освещении должны предусматриваться солнцезащитные устройства (жалюзи, козырьки, светорассеивающие стеклоблоки и стеклопластики), предотвращающие проникновение в помещение прямых солнечных лучей, которые создают резкие тени.

4. В поле зрения должна отсутствовать прямая и отраженная блескость. Блескость — повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленность). Прямая блескость создается поверхностями источников света, отраженная — поверхностями с большим коэффициентом отражения или отражением по направлению к глазу. Ослепленность приводит к быстрому утомлению человека и снижению его работоспособности.

Ограничение прямой блескости достигается уменьшением яркости источников света, правильным выбором защитного угла светильника, увеличением высоты подвеса светильников.

Ослабление отраженной блескости может быть достигнуто правильным выбором направления светового потока на рабочую поверхность, а также изменением угла наклона рабочей поверхности. Там, где это возможно, следует

17

заменять блестящие поверхности матовыми.

5. Величина освещенности должна быть постоянной во времени. Колебания освещенности, особенно если они часты и имеют большую амплитуду, каждый раз вызывают переадаптацию глаза и ведут к значительному утомлению.

 Постоянство освещенности во времени достигается стабилизацией питающего напряжения, жестким креплением светильников; применением специальных схем включения газоразрядных ламп. Например, снижение коэффициента пульсации освещенности люминесцентных ламп с 55 до 5% приводит к уменьшению утомления и росту производительности труда до 30% для работ высокой точности.

6. Следует выбирать оптимальную направленность светового потока, что позволяет в одних случаях рассмотреть внутренние поверхности деталей, в других — различить рельефность элементов рабочей поверхности.

Для освещения расточных станков, например, применяют специальный светильник с оптической системой. Такой светильник направляет внутрь обрабатываемой полости концентрированный световой поток лампы. Образовавшееся световое пятно имеет освещенность до 3000 лк и позволяет проводить контроль качества обработки, не останавливая станка.

Образование микротеней от рельефных элементов облегчает различение вследствие повышения видимого контраста этих элементов с фоном. Этот метод повышения контраста используют при браковке пиломатериалов, при определении качества обработки поверхностей деталей на строгальных и фрезерных станках. Оказалось, что наибольшая видимость достигается при падении света на рабочую поверхность под углом 60° к ее нормали, а наихудшая — при 0°.

7. Следует выбирать необходимый спектральный состав света. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях для усиления цветовых контрастов.

18

Правильную цветопередачу обеспечивает естественное освещение и искусственные источники света со спектральной характеристикой, близкой к солнечной. Для создания цветовых контрастов применяют монохроматический свет, усиливающий одни цвета и ослабляющий другие.

8. Осветительная установка не должна быть источником дополнительных опасностей и вредностей. Необходимо свести до минимума тепловыделения, излучаемый шум, опасность поражения током и ее пожароопасность.

9. Установка должна быть удобной, надежной и простой в эксплуатации.

4.  Электрические источники света  

Электрическими источниками света служат лампы накаливания, люминесцентные лампы низкого давления и ртутные лампы высокого давления.

Наиболее распространены электрические лампы накаливания. Принцип их действия основан на преобразовании электрической энергии, проходящей через ее нить, в энергию видимых излучений, воздействующих на органы зрения человека и создающих у него ощущение света, близкого к белому.

Этот процесс происходит при нагреве нити лампы до 2600—2700°С. Нить лампы не перегорает, так как температура плавления вольфрама, из которого сделана нить, значительно выше (3200—3400°С) температуры накала нити, а также вследствие того, что из колбы лампы удален воздух либо колба заполнена инертными газами (смесью азота, аргона, ксенона), в среде которых металл не окисляется.

Срок службы ламп накаливания колеблется в широких пределах, поскольку зависит от условий работы, в том числе от стабильности номинального напряжения, наличия или отсутствия механических воздействий на лампу (сотрясения, вибрации), температуры окружающей среды и др. Средний срок службы ламп накаливания общего назначения составляет 1000—1200 ч.

При    продолжительной    работе    лампы    накаливания    ее    нить    под

19

воздействием высокой температуры нагрева постепенно испаряется, уменьшается в диаметре и, наконец, перегорает.

Чем выше температура нагрева нити накала, тем больше света излучает лампа, но при этом интенсивнее протекает процесс испарения нити и сокращается срок службы лампы. В связи с этим для ламп накаливания устанавливается такая температура накала нити, при которой обеспечиваются необходимая светоотдача лампы и определенная продолжительность ее службы.

Вакуумными называют лампы накаливания, из внутреннего объема (колбы) которых удален воздух.

Лампы с колбами, заполненными инертными газами, называют газополными.

Газополные лампы при равных условиях имеют большую светоотдачу, чем вакуумные, так как газ, находящийся в колбе под давлением, препятствует испарению нити накала, что позволяет повысить ее рабочую температуру.

Недостатком газополных ламп является некоторая дополнительная потеря в них тепла нити накала через конвекцию газа, заполняющего внутреннюю полость колбы.

С целью снижения тепловых потерь газополные лампы заполняют газами с низкой теплопроводностью. Другое направление сокращения тепловых потерь — это уменьшение размеров и изменение конструкции нити накала: ее выполняют в виде плотной винтообразной моноспирали или двойной спирали (биспирали).

Недостаток ламп накаливания — низкая светоотдача: только 2—4 % потребляемой ими электрической энергии превращается в энергию видимых излучений, воспринимаемых глазом человека; остальная часть энергии переходит преимущественно в тепло, излучаемое лампой.

Широкое применение в осветительных электроустановках предприятий, учреждений, учебных и лечебных заведений получили люминесцентные лампы, которые   представляет   собой   герметически   закрытую   стеклянную   трубку,

20

внутренняя поверхность которой покрыта тонким слоем люминофора. Люминофорами называются химические вещества, в которых под действием внешних факторов (электрического разряда и др.) возникает свечение, или люминесценция. Из трубки удаляется воздух и вводится небольшое количество газа (аргона) и определенное количество ртути. Внутри трубки в ее стеклянных ножках укреплены биспиральные электроды из вольфрама, соединенные с двухштырьковыми цоколями, служащими для присоединения лампы к электрической сети. При подаче к лампе напряжения между ее электродами в парах ртути возникает электрический разряд, и лампа начинает излучать свет. Чтобы обеспечить более интенсивное излучение электронов, электроды люминесцентных ламп покрывают активирующими веществами (оксидами стронция, бария или кальция).

Световой поток, излучаемый люминесцентными лампами, не одинаков по цвету. В зависимости от цветности излучаемого лампой светового потока различают:

- лампы дневного света (ЛД);

- белого света (ЛБ);

- холодно-белого света (ЛХБ);

- тепло-белого света (ЛТБ) и др.

При выполнении работы, требующей точного определения цветовых оттенков, например в типографии при изготовлении цветных репродукций, в художественной мастерской, на текстильном или швейном предприятии и т.д., применяют лампы ЛД, предназначенные для правильной цветопередачи.

Люминесцентные лампы низкого давления являются газоразрядными электрическими источниками света.

Люминесцентные.лампы низкого давления изготовляют на напряжение 127 В мощностью 15 и 20 Вт; на напряжение 220 В мощностью 30, 40, 80 и 125 Вт. Срок службы и нормальной работы люминесцентных ламп — около 5000 ч при  условии  нечастых  включений,  стабильности номинального напряжения и

21

обеспечения оптимальной окружающей температуры (15—25°С).

Широкое применение в современных осветительных электроустановках промышленных предприятий находят дуговые ртутные лампы (ДРЛ) высокого давления. Эти лампы выпускаются с двумя и четырьмя электродами.

Четырехэлектродная ДРЛ состоит из резьбового цоколя, колбы (баллона) и кварцевой горелки. Внутри горелки находится определенное количество ртути и газ аргон. В концы горелки впаяны активированные основные и дополнительные электроды из вольфрама, а внутренняя поверхность колбы покрыта тонким слоем люминофора.

При подаче напряжения к электродам лампы в парах ртути высокого давления происходит электрический разряд, сопровождаемый интенсивным излучением света, в спектре которого отсутствуют оранжево-красные лучи, что делает лампу непригодной для освещения, поэтому состав люминофора, покрывающего внутреннюю поверхность колбы, подобран так, что под воздействием ультрафиолетовых лучей спектра он излучает оранжево-красный свет, который, смешиваясь с основным световым потоком лампы, образует свет, воспринимаемый человеческим глазом как белый с легким зеленоватым оттенком.

Четырехэлектродные ДРЛ отличаются от двухэлектродных наличием двух дополнительных электродов, подключенных к основным электродам через добавочные сопротивления. Это облегчает зажигание лампы: при подаче напряжения к лампе между основным и ближайшим дополнительным электродами возникает тлеющий разряд, под действием которого пары ртути ионизируются, способствуя разряду между основными электродами. ДРЛ с цоколем диаметром 40 мм выпускают мощностью 250—1000 Вт.

Значительно экономичнее ламп накаливания газоразрядные источники света (люминесцентные лампы и ДРЛ) — их светоотдача и срок службы в несколько раз превосходят светоотдачу и срок службы ламп накаливания.

 Для  создания современного экономичного освещения в  жилых домах  и

22

квартирах, офисных, производственных и других типах помещений, а также для подсветки архитектурных объектов различного назначения предназначены энергосберегающие и светодиодные лампы, светильники и прожекторы.

Светильники для энергосберегающих и светодиодных ламп разделяются по типу конструкции на следующие типы.

Встраиваемые – светильники, которые могут крепиться к поверхности натяжных и подвесных потолков, устанавливаться в нишах шкафов-купе, гардеробных, на карнизах кухонь.

Накладные – светильники, которые устанавливаются на поверхность натяжного потолка, стен или предметов. При этом весь корпус устройства остается на поверхности.

Поворотные – к данной группе товаров относятся светильники, устанавливаемые на кронштейнах, и модели встроенного типа. В устройствах предусмотрена возможность регулирования направления светового потока.

Лампы классифицируются следующим образом:

1. традиционные лампы накаливания - в качестве источника света здесь используется спираль из сплава на основе вольфрама. Средний срок службы таких ламп – до 1000 часов;

2. люминесцентные лампы – устройства, где в качестве источника света используется люминофор. Средний срок службы энергосберегающей лампы люминесцентного типа до 10 раз дольше, а светоотдача в несколько раз (в зависимости от модели) превышает аналогичные показатели традиционных ламп накаливания;

3. светодиодные лампы – устройства данного типа работают на основе полупроводников, непосредственно преобразующих электрическую энергию в свет. Светодиодная лампа излучает свет в узкой части спектра, благодаря чему практически отсутствуют энергопотери и не происходит выделение тепла наружу. Светодиодные энергосберегающие лампы используют для установки на всех типах поверхностей, т.к. устройства не могут привести к перегреву и порче

23

натяжных потолков, деревянной основы и т.д.;

4.  специальные:

- рефлекторы – люминесцентные лампы, заключенные в колбу с зеркальными отражающими стенками, что позволяет создавать направленное освещение;

- цветные – люминесцентные или светодиодные лампы, применяемые для декоративного оформления помещений;  

-для диммера – данный тип ламп подходит для работы с устройствами плавного старта (диммерами, вариаторами и пр.), позволяющими регулировать яркость освещения;

- для прожекторов – лампы, устанавливаемые в концентрирующую оптику для создания мощного направленного освещения;

- лампы-рули – устанавливаются в потолочные светильники с одним патроном. Дают возможность установить в стандартный патрон Е27 лампу мощностью до 54 ватт (эквивалент лампы накаливания около 300 ватт);

- прожекторы.

4. Нормирование искусственного  и  естественного       освещения

При проектировании, устройстве и эксплуатации систем освещения руководствуются СНиП "Естественное и искусственное освещение".

Основными принципами нормирования освещенности являются: обеспечение хорошей видимости деталей различия, зависящее от разряда зрительной работы (угловой размер, контраст с фоном и яркостью) на расстоянии 0,5 м от объекта различия.

При нормировании освещенности учитывают разряды зрительной работы учётом размера деталей различия. Естественное освещение оценивается коэффициентом естественной освещенности (КЕО) при боковом, верхнем и комбинированном освещении, который определяется по формуле:

24

КЕО = (Ев/Ен)Х100%,

где ЕВ - освещенность внутри помещения; ЕН - освещенность наружная.

В действующих нормах искусственного освещения в производственных помещениях (СНиП II-A.9) задаются как количественные (величина минимальной освещенности, допустимая яркость в поле зрения), так и качественные характеристики (показатель ослепленности, глубина пульсации освещенности), которые важны для создания нормальных условий труда.

     Для освещения производственных помещений в первую очередь следует применять газоразрядные лампы независимо от принятой системы освещения в связи с большими преимуществами их перед лампами накаливания экономического и светотехнического характера. Использование ламп накаливания допускается только в случаях невозможности применения газоразрядных ламп.

Принято раздельное нормирование освещенности в зависимости от применяемых источников света и системы освещения. Величина минимальной освещенности устанавливается согласно условиям зрительной работы, которые определяются наименьшим размером объекта различения, контрастом объекта с фоном и характеристикой фона.

При определении нормы освещенности необходимо учитывать ряд условий, вызывающих необходимость повышения уровня освещенности, выбранного по точности зрительной работы. Повышение освещенности следует предусматривать также в помещениях с недостаточным по нормам естественным светом, который при боковом освещении составляет менее 80% нормируемого значения, а при верхнем менее 60%. В некоторых случаях необходимо уменьшать нормируемые освещенности, например, при кратковременном пребывании людей в помещении.

По нормам искусственное освещение на рабочих местах с лампами накаливания при системе общего освещения должно быть: для работ наивысшей точностью 1000-1250 лк; грубых работ (очень малой точности) - 200

25

лк; общее наблюдение за ходом производственного процесса 200 лк; на рабочих столах офисов, аудиторий, лабораторий - 300 лк. Общее освещение должно обеспечивать равномерную освещенность всего помещения.

В СНиПовских нормах для газоразрядных ламп значения нормированной освещенности выше, чем для ламп накаливания, вследствие большой светоотдачи этих ламп. Система комбинированного освещения, как более экономичная, имеет нормы освещенности выше, чем для общего освещения. Таким образом, в нормы заложена тенденция повышения освещенности во всех случаях, когда ее можно увеличить за счет повышения экономичности установки. Для исключения частой переадаптации зрения из-за неравномерной освещенности в помещении при системе комбинированного освещения необходимо, чтобы светильники общего освещения создавали не более 10% нормированной освещенности.

Для ограничения слепящего действия отраженной блескости поверхности нормами ограничивается средняя по площади яркость рабочей поверхности. В зависимости от площади рабочей поверхности яркость ограничивается значениями от 500 кд/м2 (для блестящей поверхности более 0,2 м2) до 2500 кд/м2 (для рабочей поверхности площадью 0,01 м2 и менее).

Для ограничения слепящего действия светильников общего освещения в производственных помещениях показатель ослепленности не должен превышать 20—80 единиц в зависимости от продолжительности работы и ее зрительного разряда.

При освещении производственных помещений газоразрядными лампами, питаемыми переменным током промышленной частоты 50 Гц, следует ограничить глубину пульсации освещенности. Допустимые коэффициенты пульсации в зависимости от системы освещения и характера выполняемой работы не должны превышать 10—20%.

  Естественное освещение характеризуется тем, что создаваемая освещенность  изменяется  в  чрезвычайно  широких  пределах.  Эти  изменения

26

обусловливаются временем дня, года и метеорологическими факторами: характером облачности и отражающими свойствами земного покрова. Поэтому естественное освещение нельзя количественно задавать величиной освещенности. В качестве нормируемой величины для естественного освещения принята относительная величина – коэффициент естественной освещенности КЕО, который представляет собой выраженное в процентах отношение освещенности в данной точке внутри помещения Ев к одновременному значению наружной освещенности Ен, создаваемой светом полностью открытого небосвода.

Где, е = 100Ен/Ев %

Таким образом, КЕО оценивает размеры оконных проемов, вид остекления и переплетов, их загрязнение, т.е. способность системы естественного освещения пропускать свет. Естественное освещение регламентируется нормами СНиП 23-05-95. Нормируемое значение КЕО с учетом района расположения здания на территории РФ следует рассчитывать по формуле:

eN = ен*m

где ен – значение КЕО, определенное по СНиПу 23-05-95 с учетом характеристики зрительной работы и системы освещения,

m – коэффициент светового климата, определяемый в зависимости от района расположения здания на территории РФ и ориентации световых проемов относительно сторон света.

 Для каждого производственного помещения строится кривая значений КЕО в характерном сечении (поперечный разрез посередине помещения перпендикулярно плоскости световых проемов), которая характеризует светотехнические качества помещения.

При одностороннем боковом освещении нормируется минимальное значение КЕО в точке, расположенной на пересечении вертикальной плоскости характерного   разреза   помещения   и    условной    рабочей    поверхности    на

27

расстоянии 1 м от стены, наиболее удаленной от световых проемов, а при двустороннем освещении – в точке посередине помещения. При верхнем и комбинированном освещении нормируется среднее значение КЕО на уровне рабочей поверхности.

С установками искусственного освещения повседневно приходиться сталкиваться всем, и из всех инженерных устройств они являются, пожалуй, наиболее массовыми. Их осуществление и эксплуатация требуют больших затрат материальных средств, электроэнергии и человеческого труда, но эти затраты с избытком окупаются тем, что обеспечивается возможность нормальной жизни и деятельности людей в условиях отсутствия или недостаточности естественного освещения. Более того, искусственное освещение решает ряд задач, вообще недоступных естественному освещению, от особенности же устройства искусственного освещения, подчас кажущихся весьма незначительными, во многом зависят и производительность труда, и безопасность работы, и сохранность зрения, и архитектурный облик помещения.

В нашей стране, ведущей в небывалых масштабах промышленное и культурно-бытовое строительство, только в проектировании осветительных установок принимают участие многие тысячи специалистов, число же лиц, связанных с эксплуатацией освещения, не поддается даже приблизительной оценке.

Обычной задачей при проектировании освещенности является определение числа и мощности светильников, необходимых для обеспечения заданного значения освещенности. Значительно реже выполняются поверочные расчеты, т.е. определение ожидаемой освещенности при заданных параметрах установки.

При освещении «точечными» источниками света, т.е. лампами накаливания, а также газоразрядными лампами типов ДРЛ,ДРИ и ДНаТ, обычно число  и  размещение   светильников   намечаются  до  расчета,  в  процессе   же

28

расчета определяется необходимая же мощность лампы. При выборе лампы по стандартам допускается отклонение номинального потока лампы от требуемого расчетом в пределах от -10 до +20%. При невозможности выбрать лампу, поток который лежит в указанных пределах, изменяется число светильников.

При освещении трубчатыми люминесцентными лампами до расчета обычно намечается число и расположение рядов светильников, по результатам же расчета производиться «компоновка рядов», т.е. определение числа и мощности светильников, устанавливаемых в каждом ряду. При этом отклонения ожидаемой освещенности от заданной, должны также не превышать вышеуказанных пределов.

Все применяемые примеры расчета основаны на двух формулах, связывающих освещенность с характеристиками светильников и ламп:

E =  Ф/ S      и      E = I cosa / r 2

Принципиальная разница между которыми состоит в том, что первая из них, будучи написана в недифференциальном виде, определяет среднюю освещенность поверхности, а вторая- освещенность конкретной точки на поверхности.

Метод основанный на первой формуле, носит название метода коэффициента использования. В своих обычных формах он позволяет обеспечить среднюю освещенность горизонтальной поверхности с учетом всех падающих на нее потоков, как прямых, так и отраженных. Переход от средней освещенности к минимальной в этом случае может осуществляться лишь приближенно. Метод, основанный на второй формуле, - точечный метод, позволяет обеспечить заданное распределение освещенности на как угодно расположенных поверхностях, но лишь приближенно учесть свет, отражаемый поверхностями помещения.

Соответственно этим особенностям метод коэффициента использования применяется для проектирования общего равномерного освещения горизонтальных  поверхностей,  а  также  для  расчета  наружного  освещения  в

29

случаях, когда нормирована средняя освещенность.

Точечный метод применяется для расчета общего равномерного и локализованного освещения помещений и открытых пространств, а для расчета местного освещения при любом расположении освещаемых поверхностей. Его область применения для расчета внутреннего освещения ограничена, однако, случаями, когда достаточен приближенный учет света, отражаемого поверхностями помещения.

Область применения обоих методов частично перекрывают друг друга, но  имеется случай, в котором, казалось бы, не может применяться, ни один из методов.

Действительно, общее равномерное освещение горизонтальной поверхности без точного учета отраженного света может быть равным успехом рассчитано любым из методов. Обычно в этих случаях предпочитают пользоваться более простым методом - методом коэффициента использования, но для больших, ответственных помещений желательно пользоваться точечным методом, позволяющим не только обеспечить заданную наименьшую освещенность, но и проанализировать распределение освещенности по всей освещаемой поверхности.

Таким образом, для проектирования локализованного освещения или освещения негоризонтальных поверхностей в случаях, когда отраженный свет играет значительную роль, непосредственно не может быть применен ни один метод. В этих случаях приходиться, использовать их оба, т.е. действовать, можно сказать, комбинированным методом.

Для защиты глаз от механических повреждений, лучистого и теплового действия применяют специальные очки, щитки, маски. Стекла очков лучше использовать небьющиеся из сталинита. Очки не должны ограничивать поле зрения, должны быть легкими, не раздражать кожу, хорошо прилегать к лицу и не покрываться влагой.

Для защиты от лучистой энергии, ультрафиолетовых и инфракрасных

30

лучей, яркого света применяют очки со специальными светофильтрами типа «ТИС». При газосварке применяют защитные очки с желто-зелеными светофильтрами различной насыщенности в зависимости от яркости пламени горелки.

Для защиты глаз и лица при электросварке применяют щитки и маски. При подборе защитных очков для лиц с плохим зрением (близорукость, дальнозоркость) и особенно для лиц, выполняющих особо точные работы, желательно защитные функции очков сочетать с коррекцией зрения и подбирать специальные (оптические) стекла.

5. Эксплуатация осветительных установок. Контроль освещения

Тщательный и регулярный уход за установками естественного и искусственного света имеет значение для создания рациональных условий освещения, в частности, обеспечения требуемых величин освещенности без дополнительных затрат электроэнергии.

В установках с люминесцентными лампами и лампами ДРЛ необходимо следить за исправностью схем включения (не должно быть видимых глазу миганий ламп), а также пускорегулирующих аппаратов, о неисправности которых, например, можно судить по значительному шуму дросселей (необходимо их исправить или заменить).

Сроки чистки светильников и застекления в зависимости от запыленности помещения предусматриваются действующими нормами и должны производиться для стекол световых проемов не реже двух раз в год для помещений с незначительным выделением пыли и не реже четырех раз в год для помещений со значительными выделениями пыли, для светильников — от четырех до двенадцати раз в год в зависимости от характера запыленности производственного помещения.

Своевременно должна производиться замена перегоревших ламп, которая

31

осуществляется двумя способами: индивидуальным — заменяются лампы после выхода их из строя, и групповым — через определенный интервал одновременно заменяются и перегоревшие и работающие лампы (ДРЛ через 7500 ч, люминесцентные 40 Вт — через 8000 ч, люминесцентные 65—80 Вт — через 6300 ч).

На крупных предприятиях (при установленной общей мощности на освещение свыше 250 кВт) следует иметь специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник).

При оценке производственного освещения не реже одного раза в год после очередной чистки светильников и замены перегоревших ламп следует проверять уровень освещенности в контрольных точках.

В настоящее время основным прибором для измерения освещенности является объективный люксметр (ТИП Ю-15, Ю-16), основанный на принципе измерения фототока. Ток возникает в цепи селенового фотоэлемента и соединенного с ним гальванометра под влиянием падающего на чувствительный слой светового потока. Отклонения стрелки гальванометра пропорциональны освещенности, получающейся во время измерения на поверхности селенового фотоэлемента. Прибор градуирован в люксах (рис. 26).

Измеряя освещенность от источников света с иным, чем у ламп накаливания спектральным составом, учитывают поправочные коэффициенты. Для люминесцентных ламп ЛБ поправочный коэффициент равен 1,15; ЛД 0,88; ДРЛ 1,2; для естественного света этот коэффициент равен 0,8. При измерениях чувствительный фотоэлемент люксметра располагается в плоскости рабочей поверхности.

Полученная фактическая освещенность должна быть больше или равна нормируемой освещенности, умноженной на коэффициент запаса. При несоблюдении этого соотношения осветительная установка непригодна для дальнейшей эксплуатации и требует реконструкции или капитального ремонта.

32

7. Измерение освещенности на рабочем месте

Освещенность следует измерять не реже 1 раза в месяц, причем в Системах комбинированного освещения следует измерять освещенность раздельно: от всей системы в целом и от светильников одного общего и местного освещения.

 Для проверки уровня фактической освещенности лицо, отвечающее за эксплуатацию осветительной установки, должно располагать люксметром Ю-16  с селеновым фотоэлементом. Составными частями люксметра являются стрелочный измеритель  (обычный гальванометр с переключателем пределов измерений), выносной светоприемник — селеновый фотоэлемент , подключаемый к измерителю гибким проводом, и поглотитель—пластинка из молочно-нейтрального органического стекла, которой закрывают светоприемник при высоких освещенностях (свыше 500 лк). Падающий на плоскость фотоэлемента световой поток вызывает фототок, пропорциональный величине светового потока. По отклонению стрелки гальванометра, отградуированного в люксах, можно судить о величине освещенности. Люксметр следует хранить в сухом помещении, фотоэлемент в неработающем состоянии закрывают светонепроницаемым футляром. Два раза в год следует проверять градуировку люксметра.

При пользовании люксметром Ю-16 следует знать, что селеновый элемент не снабжен исправляющим (корригирующим) фильтром, поэтому по рекомендации завода-изготовителя при измерении освещенности от люминесцентных ламп ЛД необходимо вводить поправочный коэффициент 0,9, а при измерении освещенности от ламп ЛБ — поправочный коэффициент 1,1. Кроме того, при пользовании люксметром отсчитывать показания надо только после того, как стрелка гальванометра установится неподвижно. Объясняется это тем, что селеновый фотоэлемент обладает инерцией и при изменении освещенности  ток  в  его  цепи  устанавливается  не  сразу , чтобы не повредить

33

гальванометр, при пользовании люксметром необходимо его переключатель сначала устанавливать в положение для измерения максимального светового потока (500 лк), а затем переходить ниже (100 и 25 лк). Измеряют освещенность выборочно на рабочих местах, расположенных на различных участках цеха, как под светильниками, так и в интервалах между ними. При выборе мест для измерения освещенности необходимо учитывать расположение светильников общего освещения. Располагать фотоэлемент люксметра следует непосредственно в месте нахождения рабочей поверхности обрабатываемого изделия, поверхности прибора, шкал или поверхности стола, на котором выполняется та или иная производственная операция. Места для измерения освещенности рекомендуется выбирать в соответствии с номенклатурой рабочих мест (характером работ), перечисленных в отраслевых нормах освещенности и санитарных нормах, что обеспечит простоту сопоставления фактической, замеренной освещенности с нормированной.

Результаты измерений освещенности записывают в специальный журнал эксплуатации осветительной установки.

Заключение

Свет обеспечивает связь организма с внешней средой, обладает высоким биологическим и тонизирующим действием. Зрение — главный «информатор» человека; около 90% всей информации о внешнем мире поступает в наш мозг через глаза.

Производственное освещение, правильно спроектированное и выполненное, предназначено для решения следующих вопросов: оно улучшает условия зрительной работы, снижает утомление, способствует повышению производительности труда и качества выпускаемой продукции; благоприятно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего; повышает безопасность труда и снижает

34

травматизм на производстве.

К современному промышленному освещению предъявляются высокие требования не только гигиенического, но и технико-экономического характера.

 Часть электромагнитного спектра с длинами волн от 10 до 340 000 нм называется оптической областью спектра, которая делится на инфракрасное излучение с длинами волн от 340 000 нм до 770 нм, видимое излучение от 770 до 380 нм, ультрафиолетовое излучение — от 380 до 10 нм.

В пределах этой видимой части спектра лучистой энергии излучения различной длины волн вызывают и различные световые ощущения — от фиолетового (λ = 380 нм) до красного — (λ = 750 нм) цветов.

Трудовой процесс осуществляется при активной работе глаз: примерно 90 % информации, необходимой для трудовой деятельности и ориентации, человек получает за счет зрительной работы. Наилучшие условия для зрительного восприятия объектов в трудовом процессе создает солнечный свет. Практика показывает, что недостаточное и неправильно организованное освещение понижает трудоспособность, а также может привести к травме или к профессиональному заболеванию глаз, т.е. является, согласно ССБТ, вредным и опасным производственным фактором.

Рациональное освещение должно обеспечивать достаточную и постоянную во времени освещенность рабочих поверхностей, необходимое распределение яркостей в окружающем пространстве, отсутствие слепящего действия источника света, благоприятный спектральный состав и правильное направление светового потока.  

Проектирование рационального освещения производственных помещений невозможно без учета комплекса светотехнических и гигиенических вопросов, т. е. знания основ светотехники, функциональных характеристик зрения и принципов нормирования условий освещения.

Светотехника — наука, изучающая генерирование, распространение и перераспределение в пространстве электромагнитных излучений видимого

35

участка спектра. Любой объект, имеющий температуру выше абсолютного нуля (в градусах Кельвина он равен -2730С Цельсия), излучает лучистую энергию в окружающую его среду. Глаз человека воспринимает определенный диапазон   спектра   электромагнитных   излучении с длинами волн от 380 до 770 нм.

 

  Рекомендуемая литература

Основная литература:

1. Каракеян В. И. , Никулина Н. М. Безопасность жизнедеятельности. Учебник.- М.- «Юрайт»,- 2014

2. Холостова Е. И., Прохорова О. Г. Безопасность жизнедеятельности. Учебник.-

М.- «Дашков и К»,- 2013

Дополнительная литература:

1. Безопасность жизнедеятельности: Учебное пособие / А.С. Гайсумов, М.Г.Паничев, Е.П. Хроменкова. – Ростов – на – Дону: Феникс, 2010

2. Безопасность жизнедеятельности: Учебник / Под ред., проф. Э.А. Арустамова. – 6-е издание, переработано и дополнено. – М.: Издательско – торговая корпорация. «Дашков и Ко», 2009

3. Денисов В.В., Денисова И.А., Гутенев В.В., Мотвила О.И. Безопасность жизнедеятельности. Защита населения и территорий при чрезвычайных ситуациях: Учебное пособие. – Москва: ИКЦ «МарТ». Ростов-на-Дону: Издательский центр «МарТ». 2011.

4. Ю.В.Есипов Безопасность жизнидеятельности/ Учебно-методическое пособие Часть 1. РИС ЮРГУЭС: Ростов-на-Дону, 2009. – 68с

 


 

А также другие работы, которые могут Вас заинтересовать

53570. Управление запасами 29 KB
  Большая величина инвестиций, необходимых для создания запасов материалов группы А и В требуют применения специальных методов для управления их запасами.
53571. Кейс-технология на уроках русского языка 4.22 MB
  Респондентам людям от 15 до 25 лет было предложено объяснить значения слов которые широко употреблялись представителями предыдущих поколений: честь совесть этика мораль патриотизм и др. Респондентам людям от 15 до 25 лет было предложено объяснить значения слов которые широко употреблялись представителями предыдущих поколений: честь совесть этика мораль патриотизм и др. Респондентам людям от 15 до 25 лет было предложено объяснить значения слов которые широко употреблялись представителями предыдущих поколений: честь...
53572. Продукти харчування і здоров’я 156.5 KB
  Мета уроку: Навчальна: формування поняття про харчові добавки штрихкод генномодифіковані продукти. Форма проведення: урокконсультація Тип уроку: урок засвоєння нової інформації Обладнання: виставка інформаційних джерел про здорове харчування і харчові добавки; епіграф уроку; плакати про штрихкод шкідливі добавки про правила покупця; чорний ящик; набори упаковок продуктів...
53573. Харківщина - моя Батьківщина 169 KB
  Кожна дитина повинна зрозуміти що не тільки вчитель а й сам він учень є вихованцем самого себе як індивідуальності а саме: вдосконалювати себе поєднувати в собі єдність слова і діла поглядів і вчинків моралі і поведінки та розвивати традиції народу. Звучить пісня Бабаї Учень Що стоїть за словом Батьківщина Може то садочок пишним цвітом Чи криниця з чистою водою Поле що так смачно пахне літом Чи стеблина поєна росою Учень Знаєш брате мабуть Батьківщина То наша родина й домівка То земля що зветься Україна То село якому...
53574. Театральне та літературне життя Харкова початку ХХ століття 474.5 KB
  Учитель з художньої культури Доброго дня З великим задоволенням пропоную вам розпочати урок під час якого ми познайомимося з надзвичайно цікавою інформацією яка допоможе не тільки краще зрозуміти культурномистецьке життя Харкова на початку ХХ століття а також дасть можливість усвідомити культурні зв’язки між митцями. Заснування стаціонарного театру мало велике значення для розвитку культурномистецького життя.Старицький повість Оборона Буші драматичні твори За двома зайцями та Циганка Аза пісня що стала народною Ніч яка...
53575. Управление дебиторской задолженностью 28.5 KB
  Дебиторская задолженность представляет собой долг покупателей за проданную им продукцию. Длительность финансового цикла и соответственно требуемый объем инвестиций в его обеспечение во многом зависит от периода оборачиваемости дебиторской задолженности.
53576. Источники финансирования деятельности предприятия 26.5 KB
  По отношению к организации источники финансирования подразделяются на внутренние и внешние. К внутренним источникам относятся ресурсы, сформированные внутри организации, а к внешним – средства, формируемые вне предприятия.
53577. Чай пить – не дрова рубить 70.5 KB
  Цели мероприятия: усиление межпредпредметных связей; формирование ответственности за свою работу и работу в группе; ознакомление учащихся с историей чая как напитка; изучение некоторых свойств чая; формирование системы знаний обеспечивающих эстетическое воспитание. Задачи мероприятия: изучение состава и свойств веществ входящих в состав чая; определение основных показателей качества сырья; ознакомление учащихся с информацией о благоприятном влиянии чая на организм человека; стимулирование желания...
53578. Взаимосвязь финансового левериджа и финансового риска 25 KB
  С категорией финансового левериджа связано понятие финансового риска. Финансовый риск — это риск, обусловленный возможным недостатком средств для выплаты процентов по ссудам и займам.