87394

Безопасность жизнедеятельности. Основы электробезопасности

Конспект

Безопасность труда и охрана жизнедеятельности

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока.

Русский

2015-04-19

392.5 KB

4 чел.

МОСКОВСКИЙ  ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ  ИНСТИТУТ

Тверской филиал

ФОНДОВАЯ ЛЕКЦИЯ

по учебной дисциплине

Безопасность жизнедеятельности

 Основы электробезопасности

    

Л. В. Пьянова

Тверь 2014

Фондовая лекция «Основы электробезопасности» обсуждена и рекомендована к изданию на заседании кафедры общегуманитарных дисциплин  ТФ МГЭИ. Протокол № 2  от «15 »  октября  2014 года.

Рецензенты:

кандидат химических наук, доцент

Мухометзянов А. Г.

 

Пьянова Л. В. Основы электробезопасности: Фондовая лекция. -  Тверь: Изд-во ТФ МГЭИ, 2014. 51 стр.

 

Фондовая лекция «Основы электробезопасности» предназначена для студентов очной  и  заочной  формы   обучения   направления   030300.62     «Психология»,  080100.62 «Экономика», 080200.62 «Менедждмент», 030900.62      «Юриспруденция» квалификация (степени) выпускника бакалавр Тверского филиала МГЭИ и может оказаться полезной в самостоятельном изучении проблематики безопасности жизнедеятельности человека и среды его обитания, охраны труда, экологической  безопасности.

Л. В. Пьянова

Московский гуманитарно-экономический институт

2014 г.

3

ОГЛАВЛЕНИЕ

Введение.......................................................................................................................4

1. Факторы, влияющие на степень поражения электрическим током....................7

2. Критерии электробезопасности...........................................................................14   

3. Классификация электроустановок, электрических сетей и помещений

по степени опасности поражения человека электрическим током......................17

4.  Статические, электрические и электромагнитные поля...................................31

5.  Защита от лазерного излучения. ........................................................................39

Заключение................................................................................................................3

Рекомендуемая  литература.....................................................................................38

 

 

  

4

Введение

 При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

 Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых, воздействие тока вызывает у человека резкую реакцию отдергивания, а в ряде случаев и потерю сознания, что при работе на высоте может привести к травмированию в результате падения.

  Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

  Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение  организма,  выражающиеся  в  появлении  электрических  ожогов,

5

электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельности наиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

 Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца.

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги — наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает.

6

Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

     Оценивать опасность воздействия электрического тока на человека можно по ответным реакциям организма. С увеличением тока четко проявляются три качественно отличные ответные реакции. Это прежде всего ощущение, более судорожное сокращение мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

7

1.Факторы, влияющие на степень поражения электрическим током

Характер воздействия электрического тока на человека и тяжесть поражения пострадавшего зависит от многих факторов.

К данным факторам относятся: сила, длительность воздействия тока, его род (постоянный, переменный), пути прохождения, а также факторы окружающей среды и др.

 Сила тока и длительность воздействия. Увеличение силы тока приводит к качественным изменениям воздействия его на организм человека. С увеличением силы тока четко проявляются три качественно отличные ответные реакции организма: ощущение, судорожное сокращение мышц (неотпускание для переменного и болевой эффект для постоянного тока)  и фибрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию организма человека, получили названия ощутимых, неотпускающих и фибрилляционных, а их минимальные значения принято называть пороговыми.

  Экспериментальные исследования показали, что человек ощущает воздействие переменного тока промышленной  частоты силой 0,6—1,5 мА и постоянного тока силой 5—7 мА. Эти токи не представляют серьезной опасности для организма человека, а так как при их воздействии возможно самостоятельное освобождение человека, то допустимо их длительное протекание через тело человека.

  В тех случаях, когда поражающее действие переменного тока становится настолько сильным, что человек не в состоянии освободиться от контакта, возникает возможность длительного протекания тока через тело человека. Такие токи получили название неотпускающих, длительное воздействие их может привести к затруднению и нарушению дыхания. Численные значения силы неотпускающего тока не одинаковы для различных людей и находятся в пределах от 6 до 20 мА. Воздействие постоянного тока не приводит к неотпускающему эффекту, а вызывает сильные болевые ощущения, которые у различных людей наступают при силе тока 15—80 мА.

8  

При протекании тока в несколько десятых долей ампера возникает опасность нарушения работы сердца. Может возникнуть фибрилляция сердца, т. е. беспорядочные, некоординированные сокращения волокон сердечной мышцы. При этом сердце не в состоянии осуществлять кровообращение. Фибрилляция длится, как правило, несколько минут, после чего следует полная остановка сердца. Процесс фибрилляции сердца необратим, и ток, вызвавший его, является смертельным. Как показывают экспериментальные исследования, проводимые на животных, пороговые фибрилляционные токи зависят от массы организма, длительности протекания тока и его пути.

 Электрический ток оказывает на организм человека термическое, электролитическое и биологическое действие.

Термическое действие тока проявляется в ожогах отдельных участков тела, а также в нагреве до высоких температур других органов.

Электролитическое действие тока проявляется в разложении органических жидкостей, вызывая значительные нарушения их физико-химического состава.

Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов.

Широкое применение электрической энергии привело к тому, что практически все взрослое население, да и невзрослое тоже, в своей жизни каждодневно соприкасается с различными электроустановками. Как и все машины и механизмы, электроустановки при их неисправности или неправильной эксплуатации могут являться источником травматизма. Чтобы уменьшить опасность поражения человека электрическим током, нужно знать правила безопасной эксплуатации электроустановок и технику безопасности проведения работ на них.

 

9

Рис. 2. Факторы,влияющие на исход поражения электрическим током

Электрический ток, проходя через тело человека, оказывает тепловое, химическое и биологическое воздействия. Тепловое действие проявляется в виде ожогов участков кожи тела, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон. Химическое действие ведет к электролизу крови и других содержащихся в организме растворов, что приводит к изменению их физико-химических составов, а значит, и к нарушению нормального функционирования организма. Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток и тканей организма. В результате такого возбуждения они могут погибнуть.

 Различают два основных вида поражения человека электрическим током: электрический удар и электрические травмы. Электрическим ударом называется  такое  действие  тока  на  организм  человека,  в результате которого

10

мышцы тела начинают судорожно сокращаться. При этом в зависимости от величины тока и времени его действия человек может находиться в сознании или без сознания, но при нормальной работе сердца и дыхания. В более тяжелых случаях потеря сознания сопровождается нарушением работы сердечно-сосудистой системы, что ведет даже к смертельному исходу. В результате электрического удара возможен паралич важнейших органов (сердца, мозга и пр.).

 Электрической травмой называют такое действие тока на организм, при котором повреждаются ткани организма: кожа, мышцы, кости, связки. Особую опасность представляют электрические травмы в виде ожогов. Такой ожог появляется в месте контакта тела человека с токоведущей частью электроустановки или электрической дугой. Бывают также такие травмы, как металлизация кожи, различные механические повреждения, возникающие в результате резких непроизвольных движений человека. В результате тяжелых форм электрического удара человек может оказаться в состоянии клинической смерти: у него прекращается дыхание и кровообращение. При отсутствии медицинской помощи клиническая смерть (мнимая) может перейти в смерть биологическую. В ряде случаев, однако, при правильной медицинской помощи (искусственном дыхании и массаже сердца) можно добиться оживления мнимоумершего.

 Непосредственными причинами смерти человека, пораженного электрическим током, является прекращение работы сердца, остановка дыхания вследствие паралича мышц грудной клетки и так называемый электрический шок.

 Прекращение работы сердца возможно в результате непосредственного действия электрического тока на сердечную мышцу или рефлекторно из-за паралича нервной системы. При этом может наблюдаться полная остановка работы сердца или так называемая фибрилляция, при которой волокна сердечной мышцы приходят в состояние быстрых хаотических сокращений.

11

Остановка дыхания (вследствие паралича мышц грудной клетки) может быть результатом или непосредственного прохождения электрического тока через область грудной клетки, или вызвана рефлекторно вследствие паралича нервной системы. Электрический шок представляет собой нервную реакцию организма на возбуждение электрическим током, которая проявляется в нарушении нормального дыхания, кровообращения и обмена веществ. При длительном шоковом состоянии может наступить смерть.

 Если оказана необходимая врачебная помощь, то шоковое состояние может быть снято без дальнейших последствий для человека. Основным фактором, определяющим величину сопротивления тела человека, является кожа, ее роговой верхний слой, в котором нет кровеносных сосудов. Этот слой обладает очень большим удельным сопротивлением, и его можно рассматривать как диэлектрик. Внутренние слои кожи, имеющие кровеносные сосуды, железы и нервные окончания, обладают сравнительно небольшим удельным сопротивлением. Внутреннее сопротивление тела человека является величиной переменной, зависящей от состояния кожи (толщины, влажности) и окружающей среды (влажности, температуры и т. д.). При повреждении рогового слоя кожи (ссадина, царапина и пр.) резко снижается величина электрического сопротивления тела человека и, следовательно, увеличивается проходящий через тело ток. При повышении напряжения, приложенного к телу человека, возможен пробой рогового слоя, отчего сопротивление тела резко понижается, а величина поражающего тока возрастает.

 Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты при величине тока 1—1,5 мА и постоянного тока 5—7 мА. Эти токи называются пороговыми ощутимыми токами. Они не представляют серьезной опасности, и при таком токе человек может самостоятельно освободиться от воздействия. При переменных токах 5—10 мА раздражающее действие тока становится более сильным, появляется боль в мышцах,  сопровождаемая  судорожным их сокращением. При токах 10—15 мА

12

боль становится трудно переносимой, а судороги мышц рук или ног становятся такими сильными, что человек не в состоянии самостоятельно освободиться от действия тока. Переменные токи 10—15 мА и выше и постоянные токи 50—80 мА и выше называются неотпускающими токами, а наименьшая их величина 10—15 мА при напряжении промышленной частоты 50 Гц и 50—80 мА при постоянном напряжении источника называется пороговым неотпускающим током.

 Переменный ток промышленной частоты величиной 25 мА и выше воздействует не только на мышцы рук и ног, но также и на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть. Ток 50 мА при частоте 50 Гц вызывает быстрое нарушение работы органов дыхания, а ток около 100 мА и более при 50 Гц и 300 мА при постоянном напряжении за короткое время (1—2 с) поражает мышцу сердца и вызывает его фибрилляцию. Эти токи называются фибрилляционными. При фибрилляции сердца прекращается его работа как насоса по перекачиванию крови. Поэтому вследствие недостатка в организме кислорода происходит остановка дыхания, т. е. наступает клиническая (мнимая) смерть. Токи более 5 А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца. Чем больше время протекания тока через тело человека, тем тяжелее его результаты и больше вероятность летального исхода.

 Большое значение в исходе поражения имеет путь тока. Поражение будет более тяжелым, если на пути тока оказывается сердце, грудная клетка, головной и спинной мозг. Путь тока имеет еще то значение, что при различных случаях прикосновения будет различной величина сопротивления тела человека, а следовательно, и величина протекающего через него тока. Наиболее опасными путями прохождения тока через человека являются: «рука — ноги», «рука — рука». Менее опасным считается путь тока «нога — нога». Как показывает статистика, наибольшее число несчастных случаев происходит вследствие случайного прикосновения  или  приближения  к  голым, незащищенным частям

13

электроустановок, находящихся под напряжением. Для защиты от поражения током голые провода, шины и другие токоведущие части либо располагают в недоступных местах, либо защищают ограждениями. В некоторых случаях для защиты от прикосновения применяют крышки, короба и т. п.

 Поражение током может возникнуть при прикосновении к нетоковедущим частям электроустановки, которые оказываются под напряжением при пробое изоляции. В этом случае потенциал нетоковедущей части оказывается равным потенциалу той точки электрической цепи, в которой произошло нарушение изоляции. Опасность поражения усугубляется тем, что прикосновение к нетоковедущим частям в условиях эксплуатации является нормальной рабочей операцией, поэтому поражение всегда является неожиданным. В отношении поражения людей электрическим током в «Правилах устройства электроустановок» различают:

 Помещения с повышенной опасностью, которые характеризуются наличием в них одного из следующих условий, создающих повышенную опасность:

- сырости или проводящей пыли;

- токопроводящих полов (металлических, земляных, железобетонных, кирпичных и т. п.);

- высокой температуры;

 - возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой.

Особо опасные помещения, которые характеризуются наличием одного из следующих условий, создающих особую опасность:

- особой сырости;

- химически активной среды;

  •  одновременного наличия двух или более условий повышенной

14

опасности.

Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную опасность и особую опасность.

 

2. Критерии электробезопасности.   

С самого начала промышленного применения электричества ученые всего мира занимались изучением воздействия электрического тока на человека и последствий этого воздействия. Широкую известность получили работы следующих авторов: H.H. Egyptien, L.P. Ferris, D.G. King, H.B. Williams, W.B. Kouwenhoven, C.F. Dalziel, S. Koeppen, G. Irresberger, H. Hofherr, J.T. Harley, G. Biegelmeier, E. Reindl, Smola, B.J. Simpson, J. Jacobsen, М. Охаси, Т. Кавасэ, В.Е. Манойлова, С.К. Киселева, А.И. Сидорова, Ю.В. Ситчихина, Б.А. Князевского, В.И. Щуцкого и многих др.

 В 1950-х годах было однозначно установлено, что при воздействии электрического тока на человека, наиболее уязвимым органом является его сердце. Фибрилляция (беспорядочные сокращения мышц) сердца может возникать даже при малых значениях тока. Отпали версии об асфиксии, параличе мышц, поражении мозга как причинах летального исхода при электропоражении.

 Также было установлено, что результат воздействия электрического тока на организм человека зависит не только от значения тока, но и от продолжительности его протекания, пути тока через тело человека, а также, в меньшей степени от частоты тока, формы кривой, коэффициента пульсаций и других факторов.

 Электрическое сопротивление тела человека зависит от влажности кожи, размера поверхности контакта, пути протекания тока по телу, индивидуальных особенностей организма и других факторов. Известно, что сопротивление внутренних  органов  человека  не превышает 500-600 Ом. Сопротивление кожи

15

во влажном состоянии крайне мало - 10-20 Ом. При определении условий электробезопасности в электроустановке за расчетное принято сопротивление тела человека 800-1000 Ом.

 По причине неопределенности реального значения сопротивления тела человека для расчетной оценки опасности электропоражения в электроустановке принято использовать в качестве критерия опасности ток через тело человека, а не напряжение, приложенное к нему.

 В качестве иллюстрации к вышеизложенному далее приведены некоторые результаты научных исследований воздействия электрического тока на человека.

 

Рис 3. Зависимость предельного отпускающего тока от индивидуальных качеств испытуемого.

Известный американский ученый Charles F. Dalziel в 1950-60-е гг. провел на большой группе добровольцев фундаментальные исследования по определению электрических параметров тела человека и физиологического воздействия электрического тока на человека. Результаты его исследований считаются классическими и не потеряли своего значения до настоящего времени. На рис. 3 приведены полученные экспериментально и обработанные методами математической статистики, зависимости "отпускающего" (Let-go) тока от индивидуальных качеств человека (А - экспериментальные данные для группы  из  28 испытуемых  женщин,  Б - для  группы из 134 мужчин). На рис. 4

16

графически представлена область предельно допустимых значений тока и длительности его протекания через человека, с вероятностью 99,5 % не вызывающих фибрилляцию сердца (А - область недопустимых значений).

Рис 4. Графическая интерпретация предельных времятоковых параметров, не вызывающих фибрилляцию сердца.

По Дальцилу граница областей допустимых и недопустимых значений тока через человека и длительности его протекания определяется выражением:

I = 165 / OT ,

где I - предельно допустимый ток через человека, мА; T - длительность протекания тока через тело человека, с.

 Определенные ГОСТ 12.1.038-82 предельно допустимые значения тока через тело человека достаточно точно соответствуют этому выражению.

Таблица 1

t, с

0,01-0,08

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

св.1,0

I, мА

650

400

190

160

140

125

105

90

75

65

50

6

Таблица 2.

 t, с

0,01-0,08

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

св. 1,0

I, мА

220

200

100

70

55

50

40

35

30

27

25

2

В ГОСТ 12.1.038-82 (с изменениями от 01.07.88) "Электробезопасность. Предельно допустимые уровни напряжений прикосновения и токов" определены  предельно  допустимые значения переменного тока частотой 50 Гц

17

через тело человека в производственных (табл. 1) и бытовых (табл. 2) электроустановках в зависимости от времени воздействия

Электробезопасность это система организационно-технических мероприятий и средств, направленных на обеспечение безопасности при воздействии повышенного напряжения в электрической сети, электрического тока, электромагнитного поля и  статичтиического электричества

Электробезопасность обеспечивается более чем  20 направлениями. Она  регламентируется более 50 нормативно-техническими документами. Основной из них ГОСТ 12.1.019-79, который  регламентирует основные направления и требования при воздействии 21 фактора.

Отличают более 100 терминов по электробезопасности, 34 из которых регламентируются ГОСТ 12.1.009

Согласно ГОСТ установлены максимально допустимые уровни прикосновения и токов, значения которых, а также длительность действия установлены из реакции человека.

3. Классификация электроустановок, электрических сетей и помещений по степени опасности поражения человека электрическим током

Электроустановки и электрические сети могут быть:

- напряжением выше 1000 В с глухозаземленной нейтралью (с большими токами замыкания на землю, например, сети 110 кВ и выше);

- напряжением выше 1000 В с изолированной нейтралью (с малыми токами замыкания на землю, например, сети 6-35 кВ);

- напряжением до 1000 В с глухозаземленной нейтралью (например, 220/380 В);

  •  напряжением до 1000 В с изолированной нейтралью (применяются ограниченно).
  •  

18

Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостной ток в сети; трансформатор напряжения; или другие аппараты, имеющие большое сопротивление.

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление.

Состояние окружающей среды, а также окружающая обстановка могут увеличить или уменьшить опасность поражения током. Влага, пыль, агрессивные пары и газы, высокая температура разрушающе действуют на изоляцию электроустановок, резко снижая ее сопротивление и создавая опасность перехода напряжения на нетоковедущие металлические части оборудования, к которым может прикасаться человек. Воздействие тока на человека усугубляется также наличием токопроводящих полов, производственного оборудования, водопроводов, газопроводов и т.п.

Электрооборудование, а также защитные мероприятия и их объем нужно выбирать в зависимости от реальной степени опасности, определяемой условиями и характером окружающей среды, где предполагается эксплуатировать это оборудование.

Согласно правилам устройств электроустановок (ПУЭ) помещения по характеру окружающей среды подразделяются на: нормальные, сухие, влажные, сырые, особо сырые, жаркие, пыльные и с химически активной или органической средой.

Нормальными называются сухие помещения, в которых отсутствуют признаки, свойственные помещениям жарким, пыльным и с химически активной или органической средой.

К сухим относятся помещения, в которых относительная влажность воздуха не превышает 60%.

19

Влажными считаются помещения, в которых пары или конденсирующаяся влага выделяются не постоянно и в небольших количествах, а относительная влажность воздуха составляет 60-75%.

Сырыми являются помещения, относительная влажность воздуха которых длительное время превышает 75%.

Особо сырыми называются помещения, относительная влажность в которых близка к 100% (потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой).

К жарким относятся помещения, температура в которых под воздействием различных тепловых излучений превышает постоянно или периодически (более суток) +30С.

Пыльными считаются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин, аппаратов и т.д. Пыльные помещения подразделяются на помещения с токопроводящей и с нетокопроводящей пылью.

В помещениях с химически активной или органической  средой постоянно или в течение длительного времени выделяются агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающе действующие на изоляцию и токоведущие части электрооборудования.

По степени опасности поражения людей электрическим током все помещения подразделяются на три категории: без повышенной опасности; с повышенной опасностью; помещения особо опасные.

В помещениях без повышенной опасности  отсутствуют условия, создающие повышенную или особую опасность. К ним относятся жилые и конторские помещения, участки ручных брошюровочно-переплетных процессов, контроля, корректорские и т.п.

Для помещений с повышенной опасностью  характерно наличие одного из следующих условий: сырость или токопроводящая пыль; токопроводящие полы  (металлические,  земляные,  железобетонные,  кирпичные и т.п.); высокая

20

температура (жаркие помещения); возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.д. - с одной стороны, и к металлическим корпусам электрооборудования - с другой.

Особо опасные помещения  характеризуются наличием одного из условий, создающих особую опасность: особой сырости; химически активной или органической среды, а также одновременного наличия двух или более условий повышенной опасности (гальванические, травильные и другие подобные отделения).

Поскольку рабочее напряжение электроустановки влияет на исход случайного прикосновения к токоведущим частям, то напряжение согласно ПУЭ должно соответствовать назначению электрооборудования и характеру окружающей среды. Так, для питания электроприводов производственных машин и станков допускается напряжение 220, 380 и 660 В. Для стационарных осветительных установок - до 220 В; для ручных светильников и электрифицированного ручного инструмента, в особо опасных помещениях - до 12 В, а в помещениях с повышенной опасностью - до 36 В.

Технические меры электробезопасности при эксплуатации электроустановок.  Электробезопасность обеспечивается: конструкцией электроустановок; техническими способами и средствами защиты; организационными и техническими мероприятиями. 

В соответствии с ГОСТ 12.1.019-79 технические способы и средства защиты устанавливаются с учетом:

- номинального напряжения, рода и частоты тока электроустановки;

- способа электроснабжения (от стационарной сети, автономного источника);

- режима нейтрали (средней точки) источника питания электроэнергией (изолированная, заземленная);

- вида исполнения электроустановки (стационарная, передвижная, переносная);

  •  условий    внешней    среды    (помещения    особо    опасные,    повышенной

21

опасности, без повышенной опасности, на открытом воздухе);

- возможности снятия напряжения с токоведущих частей, на которых или вблизи которых предполагается работа;

- характера возможного прикосновения человека к элементам цепи тока (однофазное, двухфазное, прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением);

- возможности приближения к токоведущим частям, находящимся под напряжением, на расстояние меньше допустимого или попадания в зону растекания тока;

- вида работ (монтаж, наладка, испытание, эксплуатация электроустановок в зоне их расположения, в том числе в зоне воздушных линий электропередачи).

В целях обеспечения электробезопасности используют следующие технические способы и средства (часто в сочетании одного с другим): защитное заземление; зануление; защитное отключение; выравнивание потенциалов; малое напряжение; электрическое разделение сети; изоляцию токоведущих частей; оградительные устройства; предупредительную сигнализацию, блокировку, знаки безопасности; электрозащитные средства, предохранительные приспособления и др.

 Защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических не токоведущих частей, которые могут оказаться под напряжением в результате повреждения изоляции (ГОСТ 12.1.009-76). Защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью. 

Согласно ГОСТ 12.1.030-81 защитному заземлению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность. Защитное заземление следует выполнять: при номинальном напряжении 380 В и выше переменного тока и  440  В и  выше  постоянного тока - во всех случаях;

22

при номинальном напряжении 42-380 В переменного тока и 110-440 В постоянного тока при работе в условиях с повышенной опасностью и особо опасных.

Защитное заземление предназначено для устранения опасности поражения током в случае появления напряжения на металлических нетоковедущих частях электрооборудования (например, вследствие замыкания на корпус при повреждении изоляции). Защита человека обеспечивается за счет снижения до безопасных значений напряжений прикосновения и шага.

Если корпус оборудования не заземлен и произошло замыкание на него одной из фаз, то прикосновение человека к такому корпусу равнозначно прикосновению к фазе. Задача заключается в том, чтобы создать между корпусом защищаемого оборудования и землей электрическое соединение с достаточно малым сопротивлением для того, чтобы в случае замыкания на корпус этого оборудования прикосновение к нему человека не могло вызвать прохождение через его тело тока опасной величины. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек до значения, близкого к потенциалу заземленного оборудования.

Сопротивление заземляющего устройства в электроустановках напряжением до 1000 В, работающих с изолированными нейтралями, не должно превышать 4 Ом.

При мощности источников, питающих сеть до 100 кВА сопротивление заземления может быть в пределах 10 Ом.

Заземляющим устройством называется совокупность конструктивно объединенных заземляющих проводников и заземлителя (рис.5). Заземлители бывают естественными и искусственными.

23

Рис. 5. Принципиальные схемы защитного заземления:

а - в сети с изолированной нейтралью до 1000 в и выше;

б - в сети с заземленной нейтралью; 1 - заземленное оборудование;

2 - заземлитель защитного заземления; 3 - заземлитель рабочего

заземления;  - сопротивление соответственного защитного

и рабочего заземления;  - ток замыкания на землю

В качестве естественных заземлителей используют электропроводящие части строительных и производственных конструкций и коммуникаций.

В качестве искусственных заземлителей используют стальные, вертикально заложенные в землю трубы (диаметр 30-60 мм, длина 200-300 см, толщина стенок не менее 3-5 мм); стальные уголки (размеры 6060 мм, длина 250-300 см); стальные прутки (диаметр 10-12 мм, длина до 10 м) или полосы. Толщина полос должна быть не менее 4 мм, а сечение - не менее 48 .

В качестве заземляющих проводников используют стальные полосы и сталь круглого сечения. Заземляющие проводники соединяют с заземлителями и между собой сваркой, а с корпусами заземляемого оборудования - сваркой или болтами. Заземляемые объекты присоединяют к магистрали заземления параллельно. Каждый корпус электроустановки должен быть присоединен к заземляющей магистрали с помощью отдельного ответвления. Последовательное подключение нескольких заземляемых корпусов оборудования к магистрали заземления запрещено.

24

Сопротивление заземлителей растеканию тока определяется их формой и размерами, а также удельным сопротивлением грунта, зависящим от его вида и влажности. Например, при влажности грунта 10-20% удельное сопротивление  () составит: для песка - 700, супеска 300, суглинка 100, глины - 40 и чернозема - 20.

На практике для приближенного расчета сопротивления  заземлителя (электродов) растеканию тока можно пользоваться упрощенными формулами: для труб RT=0,9 p/l   для полосы Rп = 2,1 p/l,   где l - длина электродов (заземлителей), м.

 Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей (корпуса электрооборудования, кабельные конструкции и др.), которые могут оказаться под напряжением.

Нулевым защитным проводником называется проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока (генератора или трансформатора) или ее эквивалентом. Зануление применяется в трехфазных четырехпроводных сетях напряжением до 1000 В с глухозаземленной нейтралью.

При занулении, в случае замыкания сети на корпус электрооборудования, возникает однофазное короткое замыкание, т.е. замыкание между фазным и нулевым проводами. Вследствие этого установка отключается автоматически защитным аппаратом максимальной токовой защиты (перегорают плавкие предохранители или срабатывают автоматические выключатели). Так обеспечивается защита людей от поражения электрическим током.

Для быстрого перегорания плавкой вставки предохранителя или отключения автомата необходимо, чтобы ток короткого замыкания, превышал в 1,5 раза ток отключения автомата , или в 3 раза - номинальный ток плавкой вставки .

 Таким образом, при занулении исключительно большое значение имеет

25

правильный выбор предохранителей или автоматов в соответствии с величиной тока короткого замыкания петли фаза-нуль. При неправильном выборе плавкой вставки или автомата, когда  или  плавкая вставка предохранителя может не перегореть или не отключится автомат.

Нулевой провод обычно заземляется непосредственно у трансформатора или генератора (основное рабочее заземление) и повторно в местах разветвления, в конечном пункте сети, а также на воздушной линии через каждые 2-3 км. Сопротивление рабочего заземления нулевого провода должно быть не больше 4 Ом.

В сетях с глухозаземленной нейтралью недопустимо выполнять защитное заземление отдельных корпусов электрооборудования без присоединения их к нулевому проводу. В этом случае при замыкании фазы на заземленный корпус образуется однофазная цепь через два последовательно включенных сопротивления  Rо  и   Rз . Например, если их значения в соответствии с нормами  Rо=Rз=4 Ом, то при напряжении трехфазной четырехпроводной сети 220/380 В ток замыкания составит

Lк =  Uф/ Rо+ Rз= 220/4+4= 27,5 А     

Если в цепи питания данного электроприемника установлена защита из расчета номинального тока  = 40 А, то отключения не произойдет  и корпус длительное время будет находиться под напряжением относительно земли (), что недопустимо. Под таким же напряжением относительно земли окажутся корпуса всего остального оборудования, это чрезвычайно опасно.

К частям, подлежащим заземлению и занулению, относятся: корпуса электрических машин, трансформаторов, светильников; металлические оболочки проводов, стальные трубы электропроводки; каркасы распределительных щитов и др.

Защитное отключение - это быстродействующая защита,

26

обеспечивающая автоматическое отключение электроустановки (не более чем за 0,2 с) при возникновении в ней повреждения, в том числе при пробое изоляции на корпус оборудования.

Выравнивание потенциалов - метод снижения напряжений прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Выравнивание потенциалов достигается путем устройства контурных заземлений. Вертикальные заземлители в контурном заземлении располагают как по контуру, так и внутри защищаемой зоны, и соединяют стальными полосами. При замыкании токоведущих частей установки на корпус, соединенный с таким контурным заземлением, участки земли внутри контура приобретают высокий потенциал, близкий к потенциалу заземлителей. Тем самым максимальные напряжения прикосновения и шага снижаются до допустимых значений.

ёВнутри помещений выравнивание потенциалов происходит через металлические конструкции, кабели, трубопроводы и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

 Малое напряжение - номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.

К малым напряжениям прибегают в случаях питания электроинструментов, переносных светильников и местного освещения на производственном оборудовании в помещениях с повышенной опасностью и особо опасных. Однако малое напряжение нельзя считать абсолютно безопасным для человека. Поэтому наряду с малым напряжением используют и другие меры защиты.

 Электрическое разделение сети - разделение сети на отдельные, электрически  не  связанные  между  собой,  участки  с помощью разделяющего

трансформатора.  Если  сильно  разветвленную  электрическую  сеть, имеющую

27

большую емкость и малое сопротивление изоляции, разделить на ряд небольших сетей такого же напряжения, то они будут обладать незначительной емкостью и высоким сопротивлением изоляции. Опасность поражения током при этом резко снижается.

 Изоляция в электроустановках служит для защиты от случайного прикосновения к токоведущим частям. Различают рабочую, дополнительную, двойную и усиленную электрическую изоляцию.

Рабочей называется изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током.

Дополнительной является изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

Двойная изоляция состоит из рабочей и дополнительной изоляции. Она достигается путем изготовления корпусов и рукояток электрооборудования из изолирующего материала (например, электрическая дрель с корпусом из пластмассы).

Усиленная изоляция представляет собой улучшенную рабочую изоляцию, обеспечивающую такую же степень защиты от поражения электрическим током, как и двойная изоляция.

 Оградительные устройства используются для предотвращения прикосновения или опасного приближения к токоведущим частям.

 Блокировки широко применяются в электроустановках. Они бывают механическими, электрическими, электромагнитными и др. Блокировки обеспечивают снятие напряжения с токоведущих частей при попытке проникнуть к ним при открывании ограждения без снятия напряжения.

Оградительные устройства и блокировки обычно сочетают с предупредительной сигнализацией (световой и звуковой). В ряде случаев токоведущие  части  располагают  на  недоступной  высоте  или  в  недоступном

28

месте.

Организационные меры по безопасной эксплуатации электроустановок.К работе на электроустановках допускаются лица не моложе 18 лет, прошедшие инструктаж и обучение безопасным методам труда и не имеющие медицинских противопоказаний. Проверка знаний правил безопасности осуществляется в соответствии с занимаемой должностью с присвоением соответствующей квалификационной группы. Существует пять квалификационных групп по технике безопасности. Чем выше квалификационная группа, тем большие требования предъявляются к работнику, его теоретической и практической подготовке.

Организационными мероприятиями, обеспечивающими безопасность работы на действующих электроустановках, являются: назначение лиц, ответственных за организацию и производство работ; оформление наряда или распоряжения на производство работ; осуществление допуска к проведению работ; организация надзора за проведением работ; оформление окончания работы, перерывов в работе, переводов на другие рабочие места.

Работы на действующих электроустановках в соответствии с принятыми мерами безопасности подразделяются на четыре категории.

1. Выполняемые при полном снятии напряжения;

2. При частичном снятии напряжения.

3. Без снятия напряжения вблизи токоведущих частей и на токоведущих частях, находящихся под напряжением.

4. Без снятия напряжения вдали от токоведущих частей, находящихся под напряжением.

В целях безопасности обслуживающего персонала при работе на действующих электроустановках должны выполняться следующие технические и организационные мероприятия.

При проведении работ со снятием напряжения на действующих электроустановках или вблизи них:

29

- отключение установки (части установки) от источника питания электроэнергией;

- механическое запирание приводов отключенных коммутационных аппаратов, снятие предохранителей, отсоединение концов питающих линий; и другие мероприятия, обеспечивающие невозможность ошибочной подачи напряжения;

- установка знаков безопасности и ограждение остающихся под напряжением токоведущих частей, к которым в процессе работы можно прикоснуться или приблизиться на недопустимое расстояние;

- наложение заземлений (включение заземляющих ножей или наложение переносных заземлений); ограждение рабочего места и установка знаков безопасности.

При проведении работ на токоведущих частях, находящихся под напряжением, и вблизи них: выполнение работ по наряду не менее чем двумя лицами с применением электрозащитных средств, под непрерывным надзором, с обеспечением безопасного расположения работающих и используемых в работе механизмов и приспособлений.

Согласно Правилам технической эксплуатации электроустановок (ПТЭ) и Правилам техники безопасности электроустановок потребителей (ПТБ) на предприятии необходимо проводить систематический контроль изоляции электрических сетей и электроустановок, а также периодическую проверку заземляющих устройств и периодические испытания электромеханических защитных средств.

Сопротивление изоляции электропроводок, электрических машин и аппаратов измеряют не реже одного раза в год, а оборудования, находящегося в сырых помещениях и в помещениях с химически активной средой, - не реже двух раз в год

    Электрозащитными средствами называют переносимые и перевозимые изделия, служащие для защиты людей, работающих с электроустановками, от

30

поражения электрическим током, от воздействия электрической дуги и электромагнитного поля (ГОСТ 12.1.009-76).

Электрозащитные средства дополняют такие защитные устройства электроустановок, как ограждения, блокировки, защитное заземление, зануление, отключение и др. Необходимость применения электрозащитных средств вызвана тем, что при эксплуатации электроустановок иногда возникают условия, когда защитные устройства самих электроустановок не гарантируют безопасность человека.

По своему назначению средства защиты условно разделяют на изолирующие, ограждающие и вспомогательные.

Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением, и (или) от земли, если человек одновременно касается земли или заземленных частей электроустановок и токоведущих или металлических частей, оказавшихся под напряжением.

Существуют основные и дополнительные изолирующие средства.

Основные изолирующие средства имеют изоляцию, надежно выдерживающую рабочее напряжение электроустановки, поэтому с их помощью человек может касаться токоведущих частей, находящихся под напряжением.

К основным средствам, применяемым при обслуживании электроустановок напряжением до 1000 В, относятся диэлектрические перчатки, изолирующие штанги, инструменты с изолирующими ручками, токоизмерительные клещи и указатели напряжения; в электроустановках свыше 1000 В - оперативные и измерительные штанги, изолирующие и токоизмерительные клещи, указатели напряжения, изолирующие устройства и приспособления для ремонтных работ.

Изолирующие штанги  применяются для непосредственного управления разъединителями, не имеющими механического привода, для наложения

31

переносного заземления на токоведущие части, при работах как под напряжением, так и в местах, где оно может появиться.

Изолирующие клещи  применяют для вставки и снятия предохранителей, надевания резиновых изолирующих колпаков и других аналогичных работ.

Дополнительные изолирующие средства не обладают достаточной степенью защиты, и предназначены только для использования совместно с основными средствами. К ним относятся: при работах с напряжением до 1000 В - диэлектрические галоши, коврики, изолирующие подставки; при работах с напряжением свыше 1000 В - диэлектрические перчатки, боты, коврики, изолирующие подставки.

Для проверки диэлектрических свойств все изолирующие средства защиты должны подвергаться электрическим испытаниям после изготовления и периодически в процессе эксплуатации.

Ограждающие средства предназначены для временного ограждения токоведущих частей (переносные ограждения), а также для заземления отключенных токоведущих частей с целью устранения опасности при случайном появлении напряжения (временные заземления).

Вспомогательные средства служат для индивидуальной защиты работающего от тепловых, световых и механических воздействий, а также для предотвращения случайного падения с высоты. К ним относятся защитные очки, рукавицы, предохранительные пояса, страхующие канаты, «когти» и т.п.

 

4.Статические, электрические и электромагнитные поля

 Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов, изделий или на изолированных проводниках.

 На предприятиях заряды статического электричества образуются при работе  фотонаборных,  печатных,  лакировальных  и  других машин;  движении

32

красок глубокой печати и огнеопасных жидкостей (бензин, толуол) по трубопроводам; движении пылевоздушных смесей в вентиляционных воздуховодах; движении бумажных отходов в системах пневмотранспорта; сталкивании листов; при прессовке пленки; работе ременных передач и т.п.

 При движении бумаги во время печатания на ее поверхности накапливаются заряды статического электричества, что приводит к слипанию листов и прилипанию бумаги к металлическим частям. Это нарушает технологический процесс, снижает производительность труда и качество продукции.

 Заряды статического электричества могут накапливаться и на теле человека (при работе или контакте с наэлектризованными материалами и изделиями). Высокое поверхностное сопротивление тканей человека затрудняет стекание зарядов, и человек может длительное время находиться под большим потенциалом.

 Систематическое воздействие электростатического поля повышенной напряженности отрицательно влияет на организм человека. Оно может вызывать функциональные изменения центральной нервной, сердечно-сосудистой и других систем организма. Поэтому предельно допустимую интенсивность электростатического поля на рабочих местах нормируют. Нормативы, содержащиеся в документе «Санитарно-гигиенические нормы допустимой напряженности электростатического поля», распространяются на электрические поля, создаваемые легко электризующимися материалами и изделиями, а также электроустановками постоянного тока высокого напряжения.

Предельно допустимая напряженность электростатического поля  на рабочих местах не должна превышать 60 кВ/м при воздействии до 1 ч; при воздействии его свыше 1 ч и до 9 ч значение  определяют по формуле  (t - время воздействия, ч). Указанные нормативные значения при напряженности электростатического  поля  свыше  20  кВ/м   соблюдают   при   условии,   что   в

33

остальное время рабочего дня напряженность не превышает 20 кВ/м.

 Основная опасность процесса электризации в производственных условиях состоит в возможности возникновения пожаров и взрывов.  

Разность потенциалов между двумя разноименно заряженными телами в результате электростатической электризации может достигать 10 кВ и более. При определенных условиях (сухой чистый воздух) электрические заряды сохраняются длительное время, а при быстром разряде в результате пробоя воздушного промежутка между заряженными телами (например, при сближении их) возникает искровой разряд, который может быть причиной воспламенения горючих веществ. Бензол, бензин воспламеняются от электрического разряда, возникающего при разности потенциалов до 1000 В, а горючие пыли - до 5000 В (при условии достаточной энергии искры, зависящей также и от величины заряда).

 Одна из мер, препятствующих накоплению и сохранению электрических зарядов, - увеличение электропроводности воздуха, например, его увлажнение.

 Наиболее простой и эффективный метод борьбы с накоплением зарядов статического электричества - заземление производственного оборудования, трубопроводов, вентиляционных воздуховодов и емкостей. Заземляющие устройства должны иметь сопротивление не более 100 Ом. В ряде установок применяется искусственная ионизация сухого воздуха в зоне образования зарядов (нейтрализация зарядов).

 Работа нейтрализаторов статического электричества основана на разных принципах.

Индукционные нейтрализаторы могут быть с остриями и проволочные. Их действие основано на использовании заряженного электрода, на поверхности которого образуется тлеющий разряд. Заряд возникает при наличии острия или тонкой проволоки, около которых резко возрастает напряженность неоднородного электрического поля. Этот постоянно действующий      разряд      ионизирует      окружающий     воздух,     делая     его

34

электропроводным. Индукционные нейтрализаторы характеризуются высокой ионизирующей способностью, но они начинают действовать лишь в случае, когда напряжение на электродах достигает нескольких киловольт.

Радиоизотопные нейтрализаторы представляют собой излучатели радиоактивных частиц, которые обладают свойством ионизировать воздух. Для местной ионизации воздуха используют - и -излучения. Широкое применение в радиоизотопных ионизаторах получил плутоний - 239. Он достаточно эффективен на расстоянии до 40 мм от поверхности источника излучения. Радиоизотопные нейтрализаторы просты по конструкции, не требуют источника электропитания, имеют длительный срок службы и удобны в эксплуатации. Нейтрализатор представляет собой металлический контейнер, в котором находится источник излучения. Контейнер создает необходимое экранирование и позволяет регулировать направление излучения.

 В качестве индивидуальных средств защиты от электростатических зарядов можно использовать антистатическую обувь, антистатические халаты и др.

 Применение в промышленности систем, связанных с генерированием, передачей и использованием энергии электромагнитных колебаний, сопровождается возникновением электромагнитных полей (ЭМП), оказывающих вредное воздействие на организм человека.

Источниками их являются индукторы установок индукционного нагрева и сушильных устройств, высоковольтные линии электропередач, открытые распределительные устройства, устройства защиты и автоматики и т.д.

 Такое поле характеризуется векторами напряженности электрического Е (В/м) и магнитного Н (А/м) полей. Распространение электромагнитных волн связано с переносом энергии в поле. Пространство около источника переменного электрического или магнитного полей делится на зону индукции и волновую зону.

При   работе   генераторов   ВЧ   и   УВЧ   излучаются   волны   длиной  от

35

нескольких метров до нескольких километров, и на рабочем месте человек, как правило, оказывается в зоне индукции, под воздействием периодически изменяющихся электромагнитных полей. Зону индукции можно характеризовать как электрической, так и магнитной составляющими ЭМП.

 Генераторы СВЧ излучают электромагнитные волны длиной менее 1 м, и рабочие места находятся всегда в волновой зоне. В диапазоне частот 300 МГц - 300 ГГц ЭМП распространяется в виде бегущей волны. В этом диапазоне для количественной оценки облучения ЭМП принята интенсивность облучения, выраженная в величинах плотности потока энергии (ППЭ) в пространстве. ППЭ - энергия, проходящая за 1 с через  1 м2 (1см2) поверхности.  Она выражается в ваттах на квадратный метр (Вт/м2) или в микроваттах на квадратный сантиметр (мкВт/см2).

 Степень вредного воздействия ЭМП на человека зависит от напряженности электрического и магнитного полей, интенсивности потока энергии, продолжительности действия, длины волны источника, а также от индивидуальных особенностей организма.

 Систематическое воздействие на человека ЭМП низкой частоты может вызвать изменения деятельности нервной и сердечно-сосудистой систем, а также некоторые изменения в составе крови, особенно выраженные при высокой их напряженности.

Биологическое действие таких полей более высоких частот связано в основном с их тепловым и аритмическим эффектом. Поля ВЧ и УВЧ создают в тканях высокочастотные ионные потоки, нагревающие их. Такое явление наблюдается также при очень интенсивном облучении электромагнитными волнами СВЧ. Тепловое действие характеризуется общим повышением температуры тела или местным нагревом тканей, что особенно опасно для органов со слабой терморегуляцией (мозг, глаза, почки). Облучение глаз сантиметровыми волнами (от 1 до 20 см) может повысить температуру в задней части хрусталика, что вызывает его помутнение (катаракту).

36

Кроме теплового, микроволны высокочастотного поля оказывают на человека внетермическое биологическое воздействие. Биологическая активность ЭМП возрастает с уменьшением длины волны, самая высокая активность ЭМП - в области СВЧ.

Постоянное воздействие ЭМП умеренной интенсивности влияет на биофизические процессы в клетках и тканях, поражает центральную нервную и сердечно-сосудистую системы. Человек чувствует себя уставшим, появляются необоснованная раздражительность, периодические головные боли, нарушается сон. Нередки жалобы на потливость, ослабление памяти, боли в области сердца, одышку. Функциональные изменения, вызванные биологическим воздействием электромагнитных полей, обратимы. Если исключить воздействие излучения, болезненные явления исчезают.

К работе на высокочастотных установках допускаются лица не моложе 18 лет. Не реже одного раза в год они должны проходить медицинский осмотр. Люди с органическими заболеваниями центральной нервной системы, заболеваниями нервно-психической формы и эндокринно-вегетативными сердечно-сосудистыми заболеваниями, а также заболеваниями легких к работе на таких установках не допускаются.

В зависимости от диапазона частот в основу гигиенического нормирования  электромагнитных излучений положены разные принципы. Критерием безопасности для человека, находящегося в электрическом поле промышленной частоты, является напряженность  этого поля, а гигиенические нормы установлены ГОСТ 12.1.002-84. Нормируется время пребывания человека в электрическом поле в зависимости от напряженности (табл. 6)

Таблица 6. Допустимая напряженность и продолжительность пребывания  человека в электрическом поле без средств защиты

Напряженность ЭП, кВ/м

Время пребывания человека в электрическом поле (ЭП) в течение одних суток, мин

Менее 5

Без ограничений

От 5 до 10

От 5 до 10 Не более 180

Свыше 10 до 15  

Не более 90

Свыше 15 до 20

Не более 10

Свыше 20 до 25

Не более 5

 Эти нормы обеспечивают безопасность при условии, что в остальное время суток человек не подвергается воздействию ЭП напряженностью больше 5 кВ/м, а также исключена возможность воздействия на организм человека электрических разрядов.

В диапазоне частот 60 КГц - 300 МГц нормируются напряженности магнитной и электрической составляющих ЭМП. Они установлены ГОСТ 12.1.006-84 «ССБТ. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля». Интенсивность электромагнитного поля на рабочих местах и в местах возможного нахождения персонала, связанного с воздействием ЭМП, не должны превышать следующих значений:

по электрической составляющей (В/м):

50 —  для частот 60 КГц — 3 МГц;

20 — для частот 3 МГц — 30 МГц;

10 — для частот 30 КГц — 50 МГц;

5 — для частот 50 КГц — 300 МГц;

по магнитной составляющей (А/м):

5 — для частот 60 КГц — 1,5 МГц;

0,3 — для частот 30 МГц — 50 МГц.

 Интенсивность электромагнитного поля в диапазоне частот 300 МГц - 300 ГГц на рабочих местах и в местах возможного нахождения персонала, связанного с воздействием ЭМП, оценивается плотностью потока энергии. В этом случае предельно допустимую плотность потока энергии ЭМП устанавливают, исходя из допустимого значения энергетической нагрузки на организм человека и продолжительности пребывания его в зоне облучения. Однако во всех случаях она не должна превышать 10(Вт/м2) , а при наличии

38

рентгеновского излучения или высокой температуры воздуха в рабочих помещениях (выше 28С) - 1(Вт/м2) .

 Соблюдение предельно допустимых значений ЭМП контролируют измерением напряженности и плотности потока энергии ЭМП на рабочих местах и в местах возможного нахождения персонала, подвергающегося в условиях производства воздействию ЭМП. Контроль следует проводить периодически не реже одного раза в год, а также при приеме в эксплуатацию новых и при внесении изменений в конструкцию действующих установок, после ремонта, перестройки схемы и при организации новых рабочих мест. Измерения делают при наибольшей используемой мощности источника ЭМП.

Способы защиты работающих выбирают в зависимости от рабочего диапазона частот, характера выполняемых работ, напряженности и плотности потока энергии ЭМП и необходимой эффективности.

Для защиты от воздействия ЭМП используют следующие способы и средства:

 -уменьшение напряженности и плотности потока энергии ЭМП при использовании согласованных нагрузок и поглотителей мощности;

-экранирование рабочего места и удаление его от источника ЭМП;

-экранирование источника ЭМП, рациональное размещение оборудования;

-использование предупреждающей сигнализации и средств индивидуальной защиты;

-рациональные режимы работы оборудования и обслуживающего персонала.

В средствах защиты от электромагнитных излучений используют явления отражения и поглощения энергии излучателя, применяя различные экраны и поглотители.

Экраны изготовляют из листовой стали или алюминия толщиной не менее 0,5 мм. Стыки в экранах должны иметь надежный контакт. Шов выполняется

39

сваркой, пайкой или точечной электросваркой с шагом 50-100 мм в зависимости от мощности источника ЭМП. Смотровые окна и другие технологические отверстия следует экранировать густой металлической сеткой с ячейками не более 44 мм. Экран необходимо заземлять.

Фидерные двухпроводные линии, подводящие ток к рабочим контурам, надо экранировать стальными или алюминиевыми трубами. При использовании для фидерных линий коаксиального провода экранирование не требуется. Индукторы и конденсаторы также следует экранировать.

Для небольшого ослабления излучений и при ультравысоких частотах используют сетчатые экраны из цветных металлов.

 Чтобы уменьшить отражение электромагнитных излучений, стены и потолок покрывают специальной краской или поглощающими материалами. Для увеличения экранирующей способности помещений стены и перекрытия покрывают металлическими сетками и листами.

 Индивидуальными средствами защиты от электромагнитного излучения служат халаты, комбинезоны, защитные очки и др. Материал для халатов и комбинезонов - специальная радиотехническая ткань, в структуре которой тонкие металлические нити образуют сетку. Для защиты глаз служат специальные радиозащитные очки ЗП5-90 (ОРЗ-5). Стекла очков покрыты полупроводниковым оловом, прозрачным для света, но ослабляющим электромагнитную энергию.

5. Защита от лазерного излучения.

 

  Источником лазерного излучения является оптический квантовый генератор (лазер) - прибор, в котором генерируются электромагнитные волны оптического диапазона. Специфическими свойствами лазерного излучения являются острая направленность, монохроматичность, большая плотность потока энергии.

40

 Лазерная безопасность - это совокупность технических, санитарно-гигиенических и организационных мероприятий, обеспечивающих безопасные условия труда персонала при использовании лазеров.

В зависимости от технических параметров конструкции лазера и условий его эксплуатации, на работающих могут воздействовать различные опасные и вредные факторы. Основную опасность представляют прямое, рассеянное, зеркально и диффузно отраженные лазерные излучения.

При эксплуатации лазеров возникает опасность не только воздействия лазерного излучения, но и ряда сопутствующих производственных факторов: повышенное напряжение в цепях управления и источниках электропитания лазеров; повышенные запыленность и загазованность воздуха рабочей зоны продуктами взаимодействия лазерного излучения с

 По степени опасности генерируемого излучения лазеры подразделяются на четыре класса:

1 класс - выходное излучение не представляет опасности для глаз и кожи;

2 класс - выходное излучение представляет опасность при облучении глаз прямым или зеркально отраженным излучением;

3 класс - выходное излучение представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и (или) при облучении кожи прямым и зеркально отраженным излучением;

4 класс - выходное излучение представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.

Лазерное излучение воздействует на весь организм человека. Биологические эффекты, возникающие при этом, делятся на две группы: первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях; вторичные эффекты - неспецифические изменения, возникающие в организме как реакция на облучение.

41

При взаимодействии лазерного излучения с биологическими тканями человека возможны ожоги. Наиболее опасно это излучение для глаз, так как роговица и хрусталик фокусируют излучение на сетчатке и концентрируют его. В зависимости от падающей энергии лазерное излучение может вызвать временное ослепление или необратимую потерю зрения из-за сильного ожога сетчатки. При большой интенсивности излучения возможно поражение не только глаз, но кожи, внутренних органов и мозга.

Предельно допустимые уровни лазерного облучения установлены ГОСТ 12.1.040-83 «ССБТ. Лазерная безопасность. Общие положения». Предельно допустимые уровни выражаются в энергетических экспозициях.

Энергетическая экспозиция - это отношение энергии излучения, падающей на рассматриваемый участок поверхности, к площади этого участка. Единицей измерения является .

Энергетическая экспозиция нормируется отдельно для роговицы, сетчатки глаза и кожи. В различных диапазонах длин волн нормы устанавливают ПДУ лазерного излучения в зависимости от длительности импульса; частоты повторения импульсов и длительности воздействия; углового размера луча, или диаметра пятна засветки на сетчатке; фоновой освещенности лица работающего и т.д.

Предельно допустимые уровни облучения моноимпульсного и непрерывного лазерного излучения выбирают из расчета наименьшей энергетической экспозиции, не вызывающей первичных и вторичных биологических эффектов. При этом следует учитывать длину волны излучения и длительность его воздействия. Так, для непрерывного лазерного излучения с длиной волны = 0,308 мкм при облучении глаз и кожи в течение рабочего дня предельно допустимый уровень будет  

При одновременном воздействии лазерного излучения с различными параметрами на один и тот же участок тела возможно суммирование биологических эффектов.

42

Заключение

Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества (ГОСТ 12.1.009-82. ССБТ. Электробезопасность. Термины и определения).

 Требования электробезопасности изложены в Межотраслевых правилах по охране труда (правила безопасности) при эксплуатации электроустановок, Правилах технической эксплуатации электроустановок потребителей, ГОСТах и других нормативных правовых актах.

 Требования, содержащиеся в этих актах, распространяются на всех Потребителей, работников всех организаций, независимо от форм собственности и организационно-правовых форм, а также на физических лиц, занятых техническим обслуживанием электроустановок, проводящих в них оперативные переключения, организующих и выполняющих в электроустановках монтажные, наладочные, ремонтные и строительные работы, испытания и измерения (электротехнический персонал).

 Потребитель – организации всех форм собственности и организационно - правовых форм, индивидуальные предприниматели и граждане (владельцы электроустановок напряжением выше 1000 В), эксплуатирующие действующие электроустановки напряжением до 220 кВ включительно (ПТЭЭП п.1.1.2).

 Электроустановка - совокупность аппаратов, машин, приспособлений, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенная для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования её в другой вид энергии.

 Действующие в организации электроустановки должны эксплуатироваться согласно следующим основным нормативным актам:

МПОТ (ПБ) ЭЭУ - Межотраслевые правила по охране труда (правила 

43

безопасности) при эксплуатации электроустановок. ПОТРМ-016-2001. РД 153-34.0-03.150 - 00. Утверждены Министерством труда и социального развития РФ (постановление от 05.01.01 № 3) и Министерством энергетики РФ (приказ от 27.12.00 № 163).

Правила введены с 1 июля 2001 г. После введения этих правил отменены «Правила техники безопасности при эксплуатации электроустановок» (2-е издание, переработанное и дополненное. М., Энергоатомиздат, 1989) и «Правила техники безопасности при эксплуатации электроустановок потребителей» (4-е изд. переработанное и дополненное. М., Госэнергонадзор, 1994).

 ПТЭЭП – Правила технической эксплуатации электроустановок потребителей. Приказ Минэнерго от 13.01.03 № 6. Зарегистрировано в Минюсте 22.01.03 № 4145.

ПТЭ - Правила технической эксплуатации электрических станций и сетей. РД 34.20.501-95. 15-е издание, переработанное и дополненное. Утверждены РАО «ЕЭС России» 24.08.95.

ПУЭ - Правила устройства электроустановок. Утверждены Минтопэнерго РФ 06.10.99.

 ППСЗ – Правила применения и испытания средств защиты, используемых в электроустановках, технические требования к ним. 9-е издание. Утверждены Госэнергонадзором 26.11.92.

В связи с принятием 27.12.02 Федерального закона «О техническом регулировании», который вступает в силу 01.07.03, все нормативные правовые акты (НПА), принимаемые после указанной даты и содержащие требования к продукции, процессам производства, эксплуатации, хранению, перевозке, реализации, утилизации будут излагаться только в «Техническом регламенте». НПА (Правила, положения, инструкции) будут приводиться в соответствие с требованиями указанного закона и заменяться Техническими регламентами. 

 Не допускается выдача и выполнение распоряжений и заданий,

44

противоречащих требованиям, содержащимся в указанных документах.

 В соответствии с п. 1.2.2 ПТЭЭП Потребитель обязан обеспечить:

- содержание электроустановок в работоспособном состоянии, их эксплуатацию в соответствии с требованиями ПТЭЭП, МПОТ (ПБ) ЭЭУ, ПУЭ и других нормативно - технических документов;

- своевременное и качественное проведение технического обслуживания, плановопредупредительного ремонта, испытаний, модернизации и реконструкции электроустановок и электрооборудования;

- подбор электротехнического и электротехнологического персонала. Периодические медицинские осмотры работников, проведение инструктажей по безопасности труда, пожарной безопасности;

- обучение и проверку знаний электротехнического персонала и электротехнологического персонала;

- надёжность работы и безопасность эксплуатации электроустановок;

- соблюдение требований охраны труда электротехническим и электротехнологическим персоналом;

- охрану окружающей среды при эксплуатации электроустановок;

- учёт, анализ и расследование нарушений в работе электроустановок, несчастных случаев, связанных с эксплуатацией электроустановок, и принятие мер по устранению причин их возникновения;

- представление сообщений в органы госэнергонадзора об авариях, смертельных, тяжелых и групповых несчастных случаях, связанных с эксплуатацией электроустановок;

- разработку должностных и производственных инструкций по охране труда для электротехнического персонала;

- укомплектование электроустановок защитными средствами, средствами пожаротушения и инструментом;

  •  учёт, рациональное расходование электрической энергии и проведение мероприятий по энергосбережению;

45

- проведение необходимых испытаний электрооборудования, эксплуатацию устройств молниезащиты, измерительных приборов и средств учёта электрической энергии;

- выполнение предписаний органов государственного энергетического надзора.

Новые или реконструированные электроустановки и пусковые комплексы должны быть приняты в эксплуатацию в порядке, изложенном в ПТЭЭП и других нормативных документах.

В соответствии с п. 1.1.5 МПОТ (ПБ) ЭЭУ в организациях должен осуществляться контроль за соблюдением требований МПОТ (ПБ) ЭЭУ и инструкций по охране труда, контроль за проведением инструктажей по электробезопасности. Ответственность за состояние охраны труда несёт работодатель.

 Руководителю Потребителя присвоение группы по электробезопасности не требуется, если он делегировал свои полномочия по техническому руководству электроустановками руководящему работнику организации.

 Для непосредственного выполнения обязанностей по организации эксплуатации электроустановок руководитель Потребителя (кроме граждан – владельцев электроустановок напряжением выше 1000 В) соответствующим документом назначает ответственного за электрохозяйство организации и его заместителя.

 У Потребителей, установленная мощность электроустановок которых не превышает 10 кВА, работник, замещающий ответственного за электрохозяйство, может не назначаться.

 У потребителей, не занимающихся производственной деятельностью, электрохозяйство которых включает в себя только вводное (вводно-распределительное) устройство, осветительные установки, переносное электрооборудование, руководитель Потребителя ответственность за безопасную эксплуатацию электроустановок может возложить на себя по письменному согласованию с местным органом госэнергонадзора путём 

46

оформления соответствующего заявления - обязательства.

Ответственный за электрохозяйство и его заместитель назначаются из числа руководителей и специалистов Потребителя.

Назначение ответственного за электрохозяйство и его заместителя производится после проверки знаний и присвоения соответствующей группы по электробезопасности:

V – в электроустановках выше 1000 В;

IV – в электроустановках до 1000 В.

 Проверка знаний у ответственных за электрохозяйство Потребителей, их заместителей, а также специалистов по охране труда, в обязанности которых входит контроль за электроустановками, проводится в комиссии органов госэнергонадзора.

 Допускается выполнение обязанностей ответственного за электрохозяйство по совместительству.

Допускается не проводить по согласованию с органами госэнергонадзора проверку знаний у специалиста, принятого на работу по совместительству в целях возложения на него обязанностей ответственного за электрохозяйство, при одновременном выполнении следующих условий:

- с момента проверки знаний в комиссии госэнергонадзора в качестве административно - технического персонала по основной работе прошло не более 6-ти месяцев;

- энергоёмкость электроустановок, их сложность в организации по совместительству не выше, чем по месту основной работы;

- в организации по совместительству отсутствуют электроустановки напряжением выше 1000 В.

По представлению ответственного за электрохозяйство руководитель организации может назначить ответственных за электрохозяйство структурных подразделений (п. 1.2.8 ПТЭЭП).

 Индивидуальные предприниматели, выполняющие техническое

47

обслуживание и эксплуатацию электроустановок, проводящие в них монтажные, наладочные, ремонтные работы, испытания и измерения по договору, должны проходить проверку знаний в установленном порядке и иметь соответствующую группу по электробезопасности (п.1.2.5 ПТЭЭП).

Согласно п.1.4.1 ПТЭЭП эксплуатацию электроустановок (ЭУ) должен осуществлять подготовленный электротехнический персонал.

Обслуживание электротехнологических установок (электросварка, электролиз, электротермия, и т.п.), а также сложного энергонасыщенного производственно-технологического оборудования, при работе которого требуется постоянное техническое обслуживание и регулировка электроаппаратуры, электроприводов, ручных электрических машин, переносных и передвижных электроприёмников, переносного электроинструмента, должен осуществлять электротехнологический персонал. Он должен иметь достаточные навыки и знания для безопасного выполнения работ и технического обслуживания закрепленной за ним установки.

Электротехнологический персонал производственных цехов и участков, не входящих в состав энергослужбы Потребителя, осуществляющий эксплуатацию электротехнологических установок и имеющий группу по электробезопасности II и выше, в своих правах и обязанностях приравнивается к электротехническому.

Руководители, в непосредственном подчинении которых находится электротехнологический персонал, должны иметь группу по электробезопасности не ниже, чем у подчиненного персонала.

Перечень должностей и профессий электро- технологического персонала, которым необходимо иметь соответствующую группу по электробезопасности, утверждает руководитель Потребителя.

Персонал, допущенный к эксплуатации и обслуживанию электроустановок, должен:

  •  иметь   профессиональную     подготовку,     соответствующую        характеру

48

работы.    При   отсутствии профессиональной подготовки такие работники должны быть обучены (до допуска к самостоятельной работе) в специализированных центрах подготовки персонала;

- проходить медицинское освидетельствование. Состояние здоровья электротехнического персонала, обслуживающего электроустановки, определяется медицинским освидетельствованием при приёме на работу и затем проверяется периодически в сроки, установленные органами здравоохранения. Работники из электротехнического персонала не должны иметь увечий и болезней в стойкой форме, мешающих производственной работе;

- до допуска к самостоятельной работе пройти обучение приёмам освобождения пострадавшего от действия электрического тока и оказания первой помощи при несчастных случаях;

- пройти обучение на рабочем месте в объеме, необходимом для данной профессии (должности). Электротехнический персонал до допуска к самостоятельной работе или при переходе на другую работу (должность), а также при перерыве в работе свыше одного года, обязан пройти производственное обучение на рабочем месте. Программу производственного обучения составляет ответственный за электрохозяйство подразделения и утверждает ответственный за электрохозяйство предприятия;

- пройти проверку знаний МПОТ (ПБ) ЭЭУ, ПТЭЭП и других нормативно-технических документов (правил и инструкций по технической эксплуатации, пожарной безопасности, пользованию защитными средствами, устройства электроустановок) в пределах требований, предъявляемых к соответствующей должности или профессии. Ему должна быть присвоена соответствующая группа по электробезопасности и выдано удостоверение установленного образца;

пройти стажировку на рабочем месте продолжительностью не менее 2-х недель. Допуск   к   стажировке   и   самостоятельной   работе   для   ИТР    оформляется

49

распоряжением по организации, для рабочих - по подразделению;

- получить допуск к самостоятельной работе (в письменном виде).

 Для проведения проверки знаний электротехнического и электротехнологического персонала организации руководитель Потребителя должен назначить приказом по организации комиссию в составе не менее пяти человек.

Председатель комиссии должен иметь группу по электробезопасности V у Потребителей с электроустановками напряжением до и выше 1000 В и группу IV у Потребителей с электроустановками напряжением только до 1000 В.

 Все члены комиссии должны иметь группу по электробезопасности и пройти проверку знаний в комиссии органа госэнергонадзора.

Допускается проверка знаний отдельных членов комиссии на месте при условии, что председатель и не менее двух членов комиссии прошли проверку знаний в комиссии органов госэнергонадзора.

При проверке знаний должны присутствовать не менее трех членов комиссии, в том числе обязательно председатель (заместитель председателя) комиссии.

 Проверка знаний работников потребителя, численность которых не позволяет образовать комиссии по проверке знаний, должна проводиться в комиссиях органов госэнергонадзора.

Проверка знаний персонала подразделяется на первичную и периодическую (очередную и внеочередную).

Первичная проверка знаний проводится у работников, впервые поступивших на работу, связанную с обслуживанием электроустановок, или при перерыве в проверке знаний более трех лет.

Очередная проверка проводится в следующие сроки:

для электротехнического персонала, непосредственно организующего и проводящего работы по обслуживанию действующих ЭУ или выполняющего в них наладочные, электромонтажные, ремонтные работы или профилактические

50

испытания, а также для персонала, имеющего право выдачи нарядов, распоряжений, ведения оперативных переговоров, 1 раз в год;

- для административно-технического персонала, не относящегося к предыдущей категории, а также для специалистов по охране труда, допущенных к инспектированию ЭУ, – 1 раз в 3 года.

Внеочередная проверка знаний проводится независимо от срока проведения предыдущей проверки:

- при введении в действие у Потребителя новых или переработанных норм и правил;

- при установке нового оборудования, реконструкции или изменении главных электрических и технологических схем (необходимость внеочередной проверки в этом случае определяет технический руководитель);

- при назначении или переводе на другую работу, если новые обязанности требуют дополнительных знаний норм и правил;

- при нарушении работниками требований нормативных актов по охране труда;

- по требованию органов государственного надзора;

- по заключению комиссии, расследовавшей несчастные случаи с людьми или нарушения в работе энергетического объекта;

- при повышении знаний на более высокую группу;

- после получения неудовлетворительной оценки при проверке знаний;

- при перерыве в работе в данной должности более 6 месяцев.

 Внеочередная проверка, проводимая по требованию органов государственного надзора и контроля, а также после происшедших аварий, инцидентов и несчастных случаев, не отменяет сроков очередной проверки по графику и может проводиться в комиссии органов энергонадзора.

Работники, обладающие правом проведения специальных работ, должны иметь об этом запись в удостоверении. К специальным работам относятся: верхолазные работы, работы под напряжением на токоведущих частях, испытание оборудования повышенным напряжением (перечень специальных

51

работ может быть дополнен указанием работодателя).

   Рекомендуемая литература

Основная литература:

1. Каракеян В. И. , Никулина Н. М. Безопасность жизнедеятельности. Учебник.- М.- «Юрайт»,- 2014

2. Холостова Е. И., Прохорова О. Г. Безопасность жизнедеятельности. Учебник.-

М.- «Дашков и К»,- 2013

          Дополнительная литература:

1. Безопасность труда. Производственная безопасность: учеб. пособие / Л.Л. Никифоров, В.В. Персиянов. – М.: МГУПБ, 2012. – 257 с.

2. Охрана труда в мясной и молочной промышленности / А.М. Медведев, И.С. Анцыпович, Ю.Н. Виноградов. – М.: Агропромиздат, 2009. – 256 с.: ил. – (Учебники и учеб. пособия для учащихся техникумов).

3. Охрана труда в энергетике. Под ред. Б.А. Князевского. М., «Энергоатомиздат», 2010.

4. Учеб. пособие для вузов / В.Е. Анофриков, С.А. Бобок, М.Н. Дудко, Г.Д. Елистратов / ГУУ. М., ЗАО « Финстатинформ», 2009.