87815

Расчет газопровода

Лекция

География, геология и геодезия

Бернулли для участка dx газопровода запись уравнения Бернулли в интегральной форме для всего участка как это было для несжимаемой жидкости невозможна так как газ сжимаем. Последнее обусловлено низкими значениями плотностей газа на 2-3 порядка ниже плотности жидкости.

Русский

2015-04-23

42.11 KB

4 чел.

5

Лекция 6

Расчет газопровода.

При движении газов (они сжимаемы) их плотность изменяется в силу изменения давления. Одновременно, вследствие расширения газа при уменьшении давления в направлении движения увеличивается объемный расход; поэтому для газопроводов, следует оперировать не объемным расходом, а массовым расходом, поскольку для стационарного движения именно массовый расход остается неизменным.

Пусть имеется газопровод длиной l, диаметром D. По газопроводу под действием разности давлений p1p2 движется газ, температура которого неизменна на всем пути следования. Выделим на расстоянии x  от входа в газопровод элементарный участок dx, для которого характерны текущие значения давления p, плотности , скорости w газа. При этом указанные параметры переменны по всей длине газопровода.

G

D

Запишем уравнение Бернулли для участка dx газопровода (запись уравнения Бернулли в интегральной форме для всего участка, как это было для несжимаемой жидкости, невозможна, так как газ сжимаем).

В этом уравнении не все слагаемые равнозначны. Последнее обусловлено низкими значениями плотностей газа (на 2 – 3 порядка ниже плотности жидкости). По этой причине слагаемыми можно пренебречь в сравнении с  . Потерянный напор по уравнению Дарси – Вейсбаха равен   (местные потери отсутствуют). С учетом сказанного уравнение Бернулли в дифференциальном виде упростится до выражения

 

Откуда

или

Выразим переменную по длине газопровода скорость w через массовый расход (постоянный по длине) согласно уравнению массового расхода  где  откуда  , тогда

                         (1)

Перенесем  в левую часть и установим связь  и p. Будем считать, что в относительно небольшом диапазоне давлений p1p2 газ ведет себя как идеальный, тогда согласно уравнению Менделеева – Клайперона

 где R – газовая постоянная (); М – молярная масса газа. Отсюда

. Подставим это значение в  (1)

Пренебрегая влиянием Re на , интегрируем последнее уравнение от p1 до p2  и, соответственно от 0 до l, получаем, избавляясь от знака “минус» меняя пределы интегрирования в левой части

   (2)

В случае задачи эксплуатации (определение массового расхода газа при известных значениях перепада давления и геометрических размеров газопровода) последняя формула трансформируется до вида

    (3)

Расчет начинают с выбора скорости в «разумных пределах» (для газа: 5 – 30 м/с); далее – круги итерации с сопоставлением стартовых G(н) и рассчитанных  G(к) значений потоков

Алгоритм

w              G(н)           Re                         G(к)            

 или следующее приближ.        или готовый результат

Истечение жидкости из отверстия в дне сосуда при постоянном напоре. Скорость истечения. Расход. Как увеличить расход? Насадки (цилиндрическая Kр=0,82; коническая Kр=0,963; коноидальная Kр=0,98)

Пусть имеется вертикальный, цилиндрический сосуд. В дне сосуда имеется отверстие.

(0,5 – 1)dо

dо

A

2

V,w2

1

P1

V

w1

D

h

Z1

A

           

2

V,w2

P2

Z2

0

0

На участке местного сопротивления (отверстие с острыми кромками) наблюдается нестационарный характер движения жидкости (cм. «местные сопротивления»)

После сечения 2 наблюдается стационарное движение жидкости (линии тока параллельны друг другу). Расстояние от дна сосуда до 2 го сечения потока жидкости составляет 0,5  1 от диаметра отверстия dо.

Отверстие с острыми кромками – это такое отверстие, для которого можно пренебречь путевыми потерями (потерями на трение).

Запишем уравнение Бернулли для указанных двух сечений:

z1z2 = h – уровень жидкости в сосуде

Запишем уравнение сплошности

Так как  , то и .

Следовательно, потери на трение вдоль стенок сосуда равны нулю, т.е.  и

Уравнение Бернулли преобразуется до вида

или

, где     - коэффициент местного сопротивления при протекании жидкости через отверстие.

В результате подстановки получаем

или, опуская индекс «2»  откуда

 Здесь  коэффициент скорости истечения, который характеризует замедление течения жидкости по причине гидравлического сопротивления в отверстии; для отверстия с острыми кромками  

 Выведем формулу для расхода жидкости при постоянном напоре:

или, опуская индекс, , где f – сечение струи. Сечение струи связано с сечением отверстия  формулой , где  - коэффициент сжатия струи. Отсюда

. Произведение  называется коэффициентом расхода при истечении и обозначается символом Кp. Тогда

. При  уравнение расхода преобразуется до вида

. Коэффициент расхода для отверстия с острыми кромками составляет 0,62.

Для увеличения расхода отверстие можно снабдить насадками.

  1.  Цилиндрическая насадка р=0,82

dо

3-4dо

поведение струи

  1.  Коническая насадка р=0,963

поведение струи

  1.  Коноидальная насадка повторяет форму истечения струи, которая уже не отрывается от стенок. р=0,98


Время частичного или полного опорожнения сосуда произвольной формы (истечение при переменном напоре)

 Пусть имеется сосуд произвольной формы с отверстием в дне. Рассмотрим частичное опорожнение жидкости. Пусть при

. Для произвольного момента времени  уровень жидкости в сосуде будет равен z (z – текущий напор).

Pa

hн

dz

z

z

x

f0, Kp 

hк

F

pa

dV

                                       


                                                    Составим ОБС по объему жидкости за элементарный промежуток времени начиная от произвольного момента времени  для выделенного контура (на участке z)

Пр – Ух = Нак

Пр = 0; Ух = ; (принимая, что на участке сосуда высотой  ). После подстановки в ОБС получим

.

Разделяя переменные и интегрируя от 0 до  и от  до , получим

.       (1)

В случае полного опорожнения сосуда , тогда формула (1) преобразуется до вида

.       (2)

В случае сосуда постоянного поперечного сечения по высоте F выносится за знак интеграла и последующее интегрирование дает следующие результаты:

при частичном опорожнении

     (3)

при полном опорожнении

       (4)


 

А также другие работы, которые могут Вас заинтересовать

8660. Древнекитайская философия 46.5 KB
  Древнекитайская философия. Особенности средневековой философии. Древнекитайская философия. - Конфуций - латинизированное название, буквально Кун-фу-цзы - старый учитель Кун. Конфуцианство возникает в 6 веке до н.э...
8661. Философия в системе культуры 21.22 KB
  Философия в системе культуры Понятие мировоззрения. Типы мировоззрения Особенности мифологического мировоззрения Признаки религиозного мировоззрения. 1. Понятие мировоззрения. Типы мировоззрения. Сущность и структура мировоззрения. - Мировоззрение...
8662. Сущность и предназначение философии 18.7 KB
  Сущность и предназначение философии. Особенность философского мировоззрения. Истоки философии. Семь мудрецов Предмет философии. Основной вопрос философии. Особенности философского мировоззрения. Философское мировоззрение прихо...
8663. Сущность и предназначение философии. Основные формы философского дискурса 19.7 KB
  Сущность и предназначение философии. Предмет философии. Основной вопрос философии. Разделы философии. Основные формы философского дискурса. Предмет философии. - предмет философии - это то, что она изучает, это угол зрени...
8664. История философии. Античная философия (6 в. До н.э. – 4 в н.э.). 25.62 KB
  История философии.Античная философия (6 в. До н.э. - 4 в н.э.). Основные этапы развития античной философии. Особенности ранней греческой философии. Милетская школа (Фалес, Анаксимандр, Анаксимен). Философия Гераклита. Диалекти...
8665. Ранняя греческая философия 23.06 KB
  Ранняя греческая философия Пифагор и Пифагорейский союз Философия элейской школы. Атомистическое учение Демокрита. Пифагор. Ввел в обиход слово философия (как любовь к мудрости). Связал философия с математикой. Поставил вопрос о числовой структуре...
8666. Античная философия классического периода 18.71 KB
  Античная философия классического периода. Философские идеи софистов. Сократ, его жизнь, учение и смерть. Философия Платона. Мир идей и мир вещей. Гносеология Платона. Платон о человеке и государстве. Философия софистов. - Соф...
8667. Философия Платона и Аристотеля 21.84 KB
  Философия Платона и Аристотеля. Онтология и гносеология Платона. Платон о человеке и государстве. Философия Аристотеля. Платон. - Платон - ученик Сократа и учитель Аристотеля. - В молодости увлекался поэзией. Но после диалога с Сократом с...
8668. Античная философия. Греко-римский (эллинистический) период античной философии 21.25 KB
  Античная философия Аристотель о человеке и государстве. Греко-римский (эллинистический) период античной философии. I. Гносеология Аристотеля. Аристотель критиковал скептиков и агностиков, полагал, что мир познаваем. Критиковал Платона за...