88199

Расчет рупорной антенны c амплитудным и фазовым распределением на частоте 120 МГц

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

В данной работе требуется рассчитать рупорную антенну для частоты 120МГц: Размеры волновода Размеры рупора длину площадь раскрыва рупора угол раскрыва КНД антенны Построить ДН 1 Методические указания Рупорные антенны относятся к классу апертурных антенн у которых направленное излучение формируется...

Русский

2015-04-27

129.24 KB

30 чел.

ВВЕДЕНИЕ

Рупорные антенны - один из основных видов антенн СВЧ диапазона волн. Простота конструкции, удобство выполнения расчетов при хорошем  совпадении  теории  и  эксперимента,  отсутствие  потерь  в  тракте питания - вот  те  преимущества, которые  позволяют  использовать  данный тип антенн для различных практических целей и применять их в качестве эталонных для проведения различных измерений.

В данной работе требуется рассчитать рупорную антенну для частоты 120МГц:

– Размеры волновода

– Размеры рупора (длину, площадь раскрыва рупора, угол раскрыва)

– КНД антенны

– Построить ДН


1 Методические указания

Рупорные антенны относятся к классу апертурных антенн, у которых направленное излучение формируется плоской поверхностью раскрыва  S. Простейшей апертурной антенной является открытый конец волновода. Однако ввиду сравнительно малых размеров излучающей апертуры по отношению к длине волны, такая антенна имеет слабую направленность. Для увеличения направленности применяют рупорные антенны. На рисунке 1.1а по-казан Е-секториальный рупор, расширяющийся в плоскости вектора Е с по-степенным увеличением размера  b. Н-секториальный  рупор (см. рисунок 1.1б) расширяется в плоскости вектора Н с постоянным увеличением размера а. Такое название рупора получили из-за следующего: в волноводах на прак-тике используют простейший тип волны, а в прямоугольных волноводах таковым является волна Н10, структура поля которой напоминает картину электрического поля в плоском конденсаторе; расширение рупора в плос-кости соответствующего вектора поля и дает названия Е-секториальный и Н-секториальный рупор.

Рисунок 1.1 – Типы рупорных антенн

Если увеличить оба размера волновода, то получается пирамидальный рупор с раскрывом S=aH·aE (рисунок 1.1в). В отличие от секториальных рупоров диаграмма направленности сужается как в Е-, так и в Н-плоскостях.

Направленные свойства рупорной антенны приближенно можно оценить используя метод Гюйгенса-Кирхгофа. В соответствии с этим методом поле излучения любой апертурной антенны можно рассчитать путем сложения  полей излучения элементарных площадок, расположенных непрерывно по всей излучающей поверхности антенны, В данном случае излучающей поверхностью является поверхность раскрыва рупора. Поскольку в рупоре в основном сохраняется тот же характер поля, что и в волноводе, то принимают, что на апертуре существуют две взаимно-перпендикулярные тангенциальные составляющие поля ЕУ и НХ, амплитуды которых не зависят от координаты у, а вдоль координаты х изменяются по закону косинуса. Однако в отличие от поверхности открытого конца волновода, апертура рупора не может быть возбуждена синфазно, так как в рупоре распространяется цилиндрическая (в секториальных) или близкая к сферической (в пирамидальных) волна.

Для расчета фазового распределения по апертуре рупора (рисунок 1.2) найдем фазу поля в точке М на расстоянии X от центра апертуры, причем фазу поля в точке X = 0 примем за нулевую. Из геометрических соображений нетрудно найти, что уравнение распределение фазы имеет вид

Рисунок 1.2 – Фазовое распределение по апертуре

Видно, что распределение фазы поля по апертуре рупорной антенны подчинено квадратичному закону, причем фазовая ошибка тем меньше, чем больше длина антенны  R . При аналогичных расчетах, проведенных для пирамидального рупора

где RH и RE - длина рупора в Н- и Е-плоскостях соответственно. Макси-мальный сдвиг фазы имеет место при

 и  .

Тогда максимальный сдвиг фазы пирамидального рупора равен

Диаграмма направленности излучающей поверхности с квадратичным фазовым распределением, рассчитанная по методу Гюйгенса-Кирхгофа определяется математическим выражением, содержащим интегралы Френеля [I]. Следует иметь в виду, что диаграммы направленности в плоскостях Е и Н оказываются несовпадающими в силу различного характера  распределения амплитуды поля от координат X и У. Из рисунков 1.3а и 1.3б видно, что ширина диаграммы направленности больше (при одинаковых a и b ), а уровень бокового излучения рупорной антенны меньше в плоскости Н чем в плоскости Е, причем это различие вызвано только характером распределения поля по апертуре. В случае отсутствия квадратичных фазовых ошибок рупорная антенна носит название идеальной, у неё RН и RE очень велики, а формулы для расчета диаграммы направленности значительно упрощаются:

Для плоскости Е

ширина диаграммы направленности и боковые лепестки:

– по нулевому уровню  ,

– по уровню половинной мощности  ,

– уровень первого бокового лепестка равен 0,21 или -13,2 Дб.

Для плоскости H

ширина диаграммы направленности и боковые лепестки:

– по нулевому уровню  ,

– по уровню половинной мощности  ,

– уровень первого бокового лепестка равен 0,066 или -23 Дб.

Рисунок 1.3 – Диаграммы направленности рупорной пирамидальной антенны

Расширение диаграммы направленности во втором случае объясняется тем, что при косинусоидальном амплитудном распределении периферийные элементарные площадки апертуры возбуждены слабее и оказывают малое влияние на общее поле излучения, т.е. эквивалентный размер апертуры как бы уменьшается. Это общая закономерность проявляется в апертурных антеннах и антенных решетках. Чем сильнее спадает амплитуда поля к краям апертуры – тем шире главный лепесток диаграммы направленности и тем меньше уровень боковых лепестков: [1; 4; стр. 13].


2 Расчет пирамидального рупора

Рассчитаем длину волны λ и волновое число k:

,

где  – скорость света, f – частота (по заданию f = 120 МГц).

По полученному значению λ выберем волновод марки R100 c размерами a·b = 2,286·1,016 мм.

Рассчитаем коэффициент направленного действия рупора:

где  – коэффициент использования площади ( S – площадь раскрыва рупора (S = a1·a2, где a1 = 8 м, a2 = 5 м).

Найдем значения оптимальных длин рупора в плоскостях E и H:

Для пирамидального рупора эти длины могут быть различными и не совместимыми, поэтому используем уравнение «стыковки рупора с волноводом»:

Чтобы фазовые искажения в раскрыве не превысили допустимых, большее значение длины h принимаем за постоянное число и выражаем меньшее значение через большее.

Подставляем полученные значения длин рупора в уравнение «стыковки рупора с волноводом»:

Рассчитаем углы раскрыва рупорной антенны:

Рассчитаем и построим ДН рупора:

а) В плоскости H, на рисунке 2.1 представлена амплитудная ДН

Рисунок 2.1 – ДН в плоскости H

Ширина ДН по уровню 0,5: Q0,5 = 4,8о

б) В плоскости E, на рисунке 2.2 представлена амплитудная ДН


Рисунок 2.2 – ДН в плоскости E

Ширина ДН по уровню 0,5: Q0,5 = 4,6о 


ЗАКЛЮЧЕНИЕ

В данной работе была рассчитана рупорная антенна c амплитудным и фазовым распределением на частоте 120 МГц. Для этого были проведены расчеты:

– размеры волновода (волновод марки R100 c размерами a·b = 2,286·1,016 м);

– размеры рупора (S – площадь раскрыва рупора (S = a1·a2, где a1 = 8 м, a2 = 5 м), длина рупора hH = 8,53 м, hE 8,52 м, угол раскрыва рупора QH = 50,3o, QE = 37,7o);

– КНД излучателя D = 40,2,.

Проведя расчеты, были построены графики ДН, которые представлены на рисунках 2.1 и 2.2.


СПИСОК ЛИТЕРАТУРА

1. Антенны и устройства СВЧ: Методические указания к лабораторным работам. Часть 1 / Под ред. А.В. Рубцова. Рязань, 2006.

2. Антенны и устройства СВЧ. Расчет и проектирование антенных решеток и их излучающих элементов / Под ред. Д. И. Воскресенского. М. : Сов. радио, 1972.

3. Д.М. Сазонов «Антенны и устройства СВЧ», Москва «Высшая школа» 1988год.

4. Антенны и устройства СВЧ: Методические указания к лабораторным работам. / Под ред. В.В. Клоков, С.Н. Павликов, 2008.


 

А также другие работы, которые могут Вас заинтересовать

20855. ТВОРЧИЙ ПРОЕКТ З ТРУДОВОГО НАВЧАННЯ ДЛЯ УЧНІВ 7-8 КЛАСІВ ЗАГАЛЬНООСВІТНІХ НАВЧАЛЬНИХ ЗАКЛАДІВ 6.87 MB
  Організаційнопідготовчий етап охоплює такі стадії виконання проекту: формулювання завдання пошук проблеми усвідомлення проблемної сфери; дизайнаналіз аналіз аналогів вироблення ідей та варіантів; аналіз виробу формування основних параметрів і граничних вимог вибір оптимального варіанту та обґрунтування проекту прогнозування результатів. Конструкторський етап – розробка початкових ідей генерування ідей складання їх замальовок рисунків ескізів; оцінка ідей для вибору найбільш досконалої оцінка ідей за розробленими критеріями...
20857. З'єднання, одержувані для формування рамок із брусків із прямокутним підрізуванням 197.5 KB
  Дизайнаналіз: виконання аналізу аналогів у письмовій та графічній формі зразок графічної форми дивись у додатку 1; вироблення ідей та варіантів; проведення дизайнаналізу; взаємозв’язок між призначенням виробу і матеріалом з якого він виготовлений; аналіз форми виробу; зв’язок між формою і функціональним призначенням виробу; способи ручної та механічної обробки матеріалів; кінцева обробка та оздоблення виробів. Аналіз виробу: формування основних параметрів і граничних вимог; вибір оптимального варіанту та обґрунтування проекту;...
20858. Штангенциркуль 218 KB
  Штангенциркуль складається із стальної лінійки штанги 5 з міліметровими поділками відносно якої переміщується рамка 4 з ноніусом і двох пар губок ніжок – нерухомих 1 та рухомих 2. Різновиди штангенциркулів Цифровий штангенциркуль Отримання результатів вимірювання штангенциркулем.
20859. Макроэкономическое равновесие на товарном рынке. Кейнсианский подход 153 KB
  Методологические основы кейнсианского подхода. Компоненты совокупного спроса в кейнсианской модели. Кейнсианская функция потребления и сбережения. Теория инвестиционных решений. Равновесный уровень дохода. Модель «утечка-инъекции».
20860. Проблемы преподавания планиметрии и стереометрии через элективные курсы в школе 278.53 KB
  Перехода к профильному обучению математике в общеобразовательной школе, предусматривающей также элективные курсы по геометрии, и не разработанностью теоретических основ их проектирования; осуществления преемственности базового, профильного и элективного курсов по геометрии и отсутствием требований к отбору содержания последних...
20861. Хіміко-термічна обробка металів та сплавів 108 KB
  Мета хіміко-термічної обробки - надати поверхневому шару стальних деталей підвищеної твердості, зносостійкості, жаростійкості, корозійної стійкості та ін. Для цього нагріті деталі поміщають у середовище, з якого в процесі дифузії у поверхневий шар переходять деякі елементи (вуглець, азот, алюміній, хром, кремній, бор та ін.)
20862. Толковый словарь психиатрических терминов 1.75 MB
  В словаре представлены толкования основных терминов и понятий, наиболее часто употребляемых в современной психиатрической литературе, а также в смежных науках и областях знаний (психотерапии, неврологии, психологии, философии, физиологии и др.). Приведено лаконичное, но достаточно полное смысловое значение каждого термина
20863. Дифференциальная диагностика и лечение некоронарогенных заболеваний миокарда 279.5 KB
  Миокардит представляет собой поражение сердечной мышцы преимущественно воспалительного характера, обусловленное опосредованным через иммунные механизмы воздействием инфекции, паразитарной или протозойной инвазии, химических и физических факторов, а также возникающее при аллергических и иммунных заболеваниях.