884

Теорія ігор

Лабораторная работа

Информатика, кибернетика и программирование

Навчитись графічно розв’язувати задачі з теорії ігор та обирати найкращі альтернативи за різними критеріями при певному значенні критерію оптимізму.

Украинкский

2013-01-06

255.5 KB

13 чел.

Міністерство освіти і науки, молоді та спорту України

Національний університет «Львівська політехніка»

Інститут компютерних наук та інформаційних технологій

                                    

Лабораторна робота

з дисципліни „ Математичні методи дослідження операцій ”

на тему : «Теорія ігор»

                                                                                                                   Виконав:

                                                                                                                         ст. гр. КН-25

                                                                                                               Дубаньовський Я. М.

                                                                                                                    Прийняв:

                                                                                                                   Асистент

                                                                                                                             Прокопів Ю.О

                                                                       

                                                                                 

Львів 2012

                                                 Мета роботи

Навчитись графічно розвязувати задачі з теорії ігор та обирати найкращі альтернативи за різними критеріями при певному значенні критерію оптимізму.

Хід виконання роботи

Завдання 1:

Розвязати графічно гру з наступною матрицею:

 

В1

В2

В3

В4

В5

А1

16

8

10

12

4

А2

7

9

8

3

6

А3

2

9

4

1

5

А4

5

7

6

10

1

А5

3

7

9

9

3

А6

5

6

8

2

1

 

В1

В2

В3

В4

В5

а=min(Ai)

А1

16

8

10

12

4

4

А2

7

9

8

3

6

3

А3

2

9

4

1

5

1

А4

5

7

6

10

1

1

А5

3

7

9

9

3

3

А6

5

6

8

2

1

1

b=max(Bj)

16

9

10

12

6

 

Знаходимо гарантований виграш, що визначається нижньою ціною гри a = max(ai) = 4, яка вказує на максимально чисту стратегію А1. Верхня ціна гри b= min(bj) = 6.

а != b, отже ціна гри знаходиться в межах 4<=y<=6. Знаходимо розвязок гри в змішаних стратегіях. Це пояснюється тим, що гравці не можуть оголосити один одному свої справжні стратегії, вони приховують свої дії. Гру можна вирішити, якщо дозволити гравцям вибирати свої стратегії випадково (змішувати чисті стратегії).

Іноді на підставі простого розгляду матриці гри можна сказати, що деякі чисті стратегії можуть увійти в оптимальну змішану стратегію лише з нульовою ймовірністю.

Кажуть, що i-я стратегія 1-го гравця домінує його k-ю стратегію, якщо aij ≥ akj для всіх j Э N і хоча б для одного j aij > akj. У цьому випадку кажуть також, що i-я стратегія (або рядок) - домінуюча, k-я – домінуюча.

Кажуть, що j-я стратегія 2-го гравця домінує його l-ю стратегію, якщо для всіх j Э M  aij ≤ ail і хоча б для одного i aij < ail. У цьому випадку j-ю стратегію (стовпець) називають домінуючою, l-ю – домінуюча.

Стратегія А1 домінує над стратегією А4 ( всі елементи А1 >= A4), отже виключаємо 4 рядок з матриці. Імовірність:  р4=0.

Стратегія А1 домінує над стратегією А5 ( всі елементи А1 >= A5), отже виключаємо 5 рядок з матриці. Імовірність:  р5=0.

Стратегія А1 домінує над стратегією А6 ( всі елементи А1 >= A6), отже виключаємо 6 рядок з матриці. Імовірність:  р6=0.

Стратегія А2 домінує над стратегією А3 ( всі елементи А2 >= A3), отже виключаємо 3 рядок з матриці. Імовірність:  р3=0.

16

8

10

12

4

7

9

8

3

6

З позиції програшів гравця В стратегія В1 домінує над стратегією В4 (всі елементи стовпця 1 > елементів стовпця 4), отже виключаємо 1 стовпець матриці. Імовірність q=0.

З позиції програшів гравця В стратегія В2 домінує над стратегією 5 (всі елементи стовпця 2 > елементів стовпця 5), отже виключаємо 2 стовпець матриці. Імовірність q2=0.

З позиції програшів гравця В стратегія В3 домінує над стратегією 5 (всі елементи стовпця 3 > елементів стовпця 5), отже виключаємо 3 стовпець матриці. Імовірність q3=0.

12

4

3

6

Розвяжемо задачу геометрично:

М11) = (12 – 4)х1 + 4 =8х1 + 4

М21) = (3 – 6)х1 + 6 =-3х1 + 6

.

Завдання 2:

Обрати найкращі альтернативи за критеріями Вальда, Севіджа, Гурвіца, Лапласа при значенні коефіцієнту песимізму 0.5 в грі з природою, що задана матрицею:

 

П1

П2

П3

П4

П5

A1

10

25

3

6

12

A2

3

8

22

9

4

A3

12

6

21

10

9

A4

2

24

6

15

3

Критерій Лапласа:

Якщо імовірності станів природи правдоподібні, то для їхньої оцінки використовують принцип Лапласа, згідно з яким всі стани природи вважаються рівно імовірними.

q1 = q2 = ... = qn = 1/n.

qi = 1/5

Ai

П1

П2

П3

П4

П5

∑(aij)

A1

2

5

0.6

1.2

2.4

11.2

A2

0.6

1.6

4.4

1.8

0.8

9.2

A3

2.4

1.2

4.2

2

1.8

11.6

A4

0.4

4.8

1.2

3

0.6

10

pj

0.2

0.2

0.2

0.2

0.2

0

Вибираємо з (11.2; 9.2; 11.6; 10)  максимальний елемент max = 11.2

Висновок: вибираємо стратегію N=3.

Критерій Вальда:

Згідно з критерієм Вальда, за оптимальну стратегію приймається чиста стратегія, яка в найгірших умовах гарантує максимальний виграш, тобто

a = max(min aij)

Критерій Вальда орієнтує статистику на найбільш неблагополучні стани природи, тобто цей критерій виражає песимістичну оцінку ситуації.

Ai

П1

П2

П3

П4

П5

min(aij)

A1

10

25

3

6

12

3

A2

3

8

22

9

4

3

A3

12

6

21

10

9

6

A4

2

24

6

15

3

2

Вибираємо із (3,3,6,2) максимальний елемент max = 6.

Висновок: вибираємо стратегію N=3.

Критерій Севіджа:

Критерій мінімального ризику Севіджа рекомендує вибирати в якості оптимальної стратегії ту, при якій величина максимального ризику мінімізується в найгірших умовах, тобто забезпечується:

a = min(max rij)

Критерій Севіджа орієнтує статистику на найбільш несприятливі стани природи, тобто цей критерій виражає песимістичну оцінку ситуації.

Знаходимо матрицю ризиків.

Ризик – міра невідповідності між різними можливими результатами прийняття певних стратегій. Максимальний виграш в j-му стовпці bj = max(aij) характеризує благополучність стану природи.

1-й стовпець матриці ризиків:

r11 = 12 - 10 = 2; r21 = 12 - 3 = 9; r31 = 12 - 12 = 0; r41 = 12 - 2 = 10;

2-й стовпець матриці ризиків:

r12 = 25 - 25 = 0; r22 = 25 - 8 = 17; r32 = 25 - 6 = 19; r42 = 25 - 24 = 1;

3-й стовпець матриці ризиків:

r13 = 22 - 3 = 19; r23 = 22 - 22 = 0; r33 = 22 - 21 = 1; r43 = 22 - 6 = 16;

4-й стовпець матриці ризиків:

r14 = 15 - 6= 9; r24 = 15 - 9 = 6; r34 = 15 - 10 = 5; r44 = 15 - 15 = 0;

5-й стовпець матриці ризиків:

r15 = 12 - 12 = 0; r25 = 12 - 4 = 8; r35 = 12 - 9 = 3; r45 = 12 - 3 = 9;

Ai

П1

П2

П3

П4

П5

A1

2

0

19

9

0

A2

9

17

0

6

8

A3

0

19

1

5

3

A4

10

1

16

0

9

Ai

П1

П2

П3

П4

П5

max(aij)

A1

2

0

19

9

0

19

A2

9

17

0

6

8

17

A3

0

19

1

5

3

19

A4

10

1

16

0

9

16

Вибираємо з (19,17,19,16,) мінімальний елемент min=16

Висновок: вибираємо стратегію N=4.

Критерій Гурвіца:

Критерій Гурвіца є критерієм песимізму – оптимізму. За оптимальну приймається та стратегія, для якої виконується співвідношення:

max(si)

де si = y min(aij) + (1-y)max(aij)

При у=1 отримаєм критерій Вальде, при у=0 – оптимістичний критерій (максімакс).

Критерій Гурвіца враховує можливість як і найгіршого, так і найкращого для людини стану природи.

Вибір Y: чим гірші наслідки помилкових рішень, тим більше бажання застрахуватись від помилок, тим Y ближче до 1.

Розрахунок Si:

Згідно умови завдання коефіцієнт y=0.5;

s1 = 0.5•3+(1-0.5)•25 = 14

s2 = 0.5•3+(1-0.5)•22 = 12.5

s3 = 0.5•6+(1-0.5)•21 = 13.5

s4 = 0.5•2+(1-0.5)•24 = 13

Ai

П1

П2

П3

П4

П5

min(aij)

max(aij)

y min(aij) + (1-y)max(aij)

A1

10

25

3

6

12

3

25

14

A2

3

8

22

9

4

3

22

12.5

A3

12

6

21

10

9

6

21

13.5

A4

2

24

6

15

3

2

24

13

Вибираємо з (14,12.5,13.5,13,) максимальний елемент max=14

Висновок: вибираємо стратегію N=1.

Таким чином, у результаті рішення статистичної гри за різними критеріями частіше за інших рекомендувалася стратегія A3.

Висновок

Під час виконання цієї лабораторної роботи я навчився розвязувати графічно задачі з теорії ігор та обирати найкращі альтернативи за критеріями Вальда, Севіджа, Гурвіца та Лапласа.


 

А также другие работы, которые могут Вас заинтересовать

79600. Изучение тревожности у детей 6-7 лет средствами игровой терапии 643 KB
  Гипотеза нашего исследования основана на том, что коррекционная работа будет способствовать снижению тревожностей у детей 6-7 лет, Психолог обладает навыками моделирования и подбора специальных коррекционных упражнений, программ по преодолению тревожности, которые могут осуществлять адресную, индивидуальную коррекцию.
79601. ПРАКТИЧЕСКИЕ АСПЕКТЫ ПРИМЕНЕНИЯ ТЕАТРАЛИЗАЦИИ В СОЦИОКУЛЬТУРНОЙ СФЕРЕ (НА ПРИМЕРЕ СОЦИОКУЛЬТУРНОГО PR-ПРОЕКТА «ЭТЮД») 3.8 MB
  Все вышесказанное определило цель нашего дипломного проекта – охарактеризовать театрализацию как технологию связей с общественностью применительно в социокультурной сфере и реализовать социокультурный PR-проект, направленный на социализацию детей-сирот и детей, оставшихся без попечения родителей...
79602. СОЧЕТАНИЕ ТРАДИЦИОННЫХ И КОМПАРАТИВИСТСКИХ НАЧАЛ В ПРОЦЕССЕ КОНСТИТУЦИОННОГО РАЗВИТИЯ ПОЛИТИЧЕСКОЙ СИСТЕМЫ ЯПОНИИ 108 KB
  В течение длительного исторического периода Япония развивалась, подвергаясь культурному влиянию таких стран-соседей, как Китай и Корея, и поддерживала связи только с этими странами. В XV–XVI вв. в Японию проникли португальские и испанские миссионеры, благодаря которым страна впервые соприкоснулась...
79603. ПРАВО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ В ИНТЕРНЕТ 90 KB
  По существу, общественные отношения, складывающиеся в сети, развиваются «параллельно» реальным отношениям, в то же время совпадая с последними по содержанию. Сеть используется во всех сферах жизнедеятельности общества: политической, экономической, культурной и др.
79604. НОВОЕ В РАЗВИТИИ РОССИЙСКОГО АВТОРСКОГО ПРАВА 74 KB
  Поводом для написания настоящей статьи послужило участие в семинаре организованном Российским авторским обществом при финансовой поддержке Tcis проходившем в г. Широкий и представительный состав участников этого мероприятия позволил сделать ряд выводов о тенденциях современного авторского права...
79605. ЗАЩИТА ПРАВ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ 81 KB
  Соответственно право на защиту здесь будет пониматься как субъективное гражданское право юридически закрепленная возможность управомоченного лица использовать специальные меры правоохранительного характера которая включает в себя как материально-правовые так и процессуальные меры.
79606. О НЕКОТОРЫХ МЕТОДОЛОГИЧЕСКИХ АСПЕКТАХ ИЗУЧЕНИЯ НОРМАТИВНО-ПРАВОВЫХ СИСТЕМ СУБЪЕКТОВ РФ В СВЕТЕ ПРОБЛЕМ ФЕДЕРАЛИЗМА 81 KB
  При изучении нормативно-правовых систем субъектов РФ по нашему мнению необходимо учитывать следующие моменты: отечественная доктрина не редко отрицает деление права в рамках федерации на федеральное право и право субъектов.
79607. О СУЩЕСТВУЮЩИХ ОПРЕДЕЛЕНИЯХ ТЕРМИНА «ЗАКОНОДАТЕЛЬСТВО» В ОТЕЧЕСТВЕННОМ ПРАВОВЕДЕНИИ 111.5 KB
  Подзаконные нормативные правовые акты если они включены в круг источников права отделяются от понятия законодательство и как правило закрепляются как самостоятельные источники наряду с законодательством законами. Речь идет о понимании законодательства как всего объема...
79608. СОВОКУПНОСТЬ ПРЕСТУПЛЕНИЙ: ИСТОРИЯ РАЗВИТИЯ И ПРОБЛЕМЫ СООТНОШЕНИЯ РЕАЛЬНОЙ И ИДЕАЛЬНОЙ СОВОКУПНОСТИ 94.5 KB
  Квалификация при совокупности преступлений всегда представляла определенную трудность особенно в тех случаях когда преступления входящие в предмет судебной оценки существенно отличаются друг от друга по своему характеру направленности умысла и совершены в различной последовательности.