884

Теорія ігор

Лабораторная работа

Информатика, кибернетика и программирование

Навчитись графічно розв’язувати задачі з теорії ігор та обирати найкращі альтернативи за різними критеріями при певному значенні критерію оптимізму.

Украинкский

2013-01-06

255.5 KB

13 чел.

Міністерство освіти і науки, молоді та спорту України

Національний університет «Львівська політехніка»

Інститут компютерних наук та інформаційних технологій

                                    

Лабораторна робота

з дисципліни „ Математичні методи дослідження операцій ”

на тему : «Теорія ігор»

                                                                                                                   Виконав:

                                                                                                                         ст. гр. КН-25

                                                                                                               Дубаньовський Я. М.

                                                                                                                    Прийняв:

                                                                                                                   Асистент

                                                                                                                             Прокопів Ю.О

                                                                       

                                                                                 

Львів 2012

                                                 Мета роботи

Навчитись графічно розвязувати задачі з теорії ігор та обирати найкращі альтернативи за різними критеріями при певному значенні критерію оптимізму.

Хід виконання роботи

Завдання 1:

Розвязати графічно гру з наступною матрицею:

 

В1

В2

В3

В4

В5

А1

16

8

10

12

4

А2

7

9

8

3

6

А3

2

9

4

1

5

А4

5

7

6

10

1

А5

3

7

9

9

3

А6

5

6

8

2

1

 

В1

В2

В3

В4

В5

а=min(Ai)

А1

16

8

10

12

4

4

А2

7

9

8

3

6

3

А3

2

9

4

1

5

1

А4

5

7

6

10

1

1

А5

3

7

9

9

3

3

А6

5

6

8

2

1

1

b=max(Bj)

16

9

10

12

6

 

Знаходимо гарантований виграш, що визначається нижньою ціною гри a = max(ai) = 4, яка вказує на максимально чисту стратегію А1. Верхня ціна гри b= min(bj) = 6.

а != b, отже ціна гри знаходиться в межах 4<=y<=6. Знаходимо розвязок гри в змішаних стратегіях. Це пояснюється тим, що гравці не можуть оголосити один одному свої справжні стратегії, вони приховують свої дії. Гру можна вирішити, якщо дозволити гравцям вибирати свої стратегії випадково (змішувати чисті стратегії).

Іноді на підставі простого розгляду матриці гри можна сказати, що деякі чисті стратегії можуть увійти в оптимальну змішану стратегію лише з нульовою ймовірністю.

Кажуть, що i-я стратегія 1-го гравця домінує його k-ю стратегію, якщо aij ≥ akj для всіх j Э N і хоча б для одного j aij > akj. У цьому випадку кажуть також, що i-я стратегія (або рядок) - домінуюча, k-я – домінуюча.

Кажуть, що j-я стратегія 2-го гравця домінує його l-ю стратегію, якщо для всіх j Э M  aij ≤ ail і хоча б для одного i aij < ail. У цьому випадку j-ю стратегію (стовпець) називають домінуючою, l-ю – домінуюча.

Стратегія А1 домінує над стратегією А4 ( всі елементи А1 >= A4), отже виключаємо 4 рядок з матриці. Імовірність:  р4=0.

Стратегія А1 домінує над стратегією А5 ( всі елементи А1 >= A5), отже виключаємо 5 рядок з матриці. Імовірність:  р5=0.

Стратегія А1 домінує над стратегією А6 ( всі елементи А1 >= A6), отже виключаємо 6 рядок з матриці. Імовірність:  р6=0.

Стратегія А2 домінує над стратегією А3 ( всі елементи А2 >= A3), отже виключаємо 3 рядок з матриці. Імовірність:  р3=0.

16

8

10

12

4

7

9

8

3

6

З позиції програшів гравця В стратегія В1 домінує над стратегією В4 (всі елементи стовпця 1 > елементів стовпця 4), отже виключаємо 1 стовпець матриці. Імовірність q=0.

З позиції програшів гравця В стратегія В2 домінує над стратегією 5 (всі елементи стовпця 2 > елементів стовпця 5), отже виключаємо 2 стовпець матриці. Імовірність q2=0.

З позиції програшів гравця В стратегія В3 домінує над стратегією 5 (всі елементи стовпця 3 > елементів стовпця 5), отже виключаємо 3 стовпець матриці. Імовірність q3=0.

12

4

3

6

Розвяжемо задачу геометрично:

М11) = (12 – 4)х1 + 4 =8х1 + 4

М21) = (3 – 6)х1 + 6 =-3х1 + 6

.

Завдання 2:

Обрати найкращі альтернативи за критеріями Вальда, Севіджа, Гурвіца, Лапласа при значенні коефіцієнту песимізму 0.5 в грі з природою, що задана матрицею:

 

П1

П2

П3

П4

П5

A1

10

25

3

6

12

A2

3

8

22

9

4

A3

12

6

21

10

9

A4

2

24

6

15

3

Критерій Лапласа:

Якщо імовірності станів природи правдоподібні, то для їхньої оцінки використовують принцип Лапласа, згідно з яким всі стани природи вважаються рівно імовірними.

q1 = q2 = ... = qn = 1/n.

qi = 1/5

Ai

П1

П2

П3

П4

П5

∑(aij)

A1

2

5

0.6

1.2

2.4

11.2

A2

0.6

1.6

4.4

1.8

0.8

9.2

A3

2.4

1.2

4.2

2

1.8

11.6

A4

0.4

4.8

1.2

3

0.6

10

pj

0.2

0.2

0.2

0.2

0.2

0

Вибираємо з (11.2; 9.2; 11.6; 10)  максимальний елемент max = 11.2

Висновок: вибираємо стратегію N=3.

Критерій Вальда:

Згідно з критерієм Вальда, за оптимальну стратегію приймається чиста стратегія, яка в найгірших умовах гарантує максимальний виграш, тобто

a = max(min aij)

Критерій Вальда орієнтує статистику на найбільш неблагополучні стани природи, тобто цей критерій виражає песимістичну оцінку ситуації.

Ai

П1

П2

П3

П4

П5

min(aij)

A1

10

25

3

6

12

3

A2

3

8

22

9

4

3

A3

12

6

21

10

9

6

A4

2

24

6

15

3

2

Вибираємо із (3,3,6,2) максимальний елемент max = 6.

Висновок: вибираємо стратегію N=3.

Критерій Севіджа:

Критерій мінімального ризику Севіджа рекомендує вибирати в якості оптимальної стратегії ту, при якій величина максимального ризику мінімізується в найгірших умовах, тобто забезпечується:

a = min(max rij)

Критерій Севіджа орієнтує статистику на найбільш несприятливі стани природи, тобто цей критерій виражає песимістичну оцінку ситуації.

Знаходимо матрицю ризиків.

Ризик – міра невідповідності між різними можливими результатами прийняття певних стратегій. Максимальний виграш в j-му стовпці bj = max(aij) характеризує благополучність стану природи.

1-й стовпець матриці ризиків:

r11 = 12 - 10 = 2; r21 = 12 - 3 = 9; r31 = 12 - 12 = 0; r41 = 12 - 2 = 10;

2-й стовпець матриці ризиків:

r12 = 25 - 25 = 0; r22 = 25 - 8 = 17; r32 = 25 - 6 = 19; r42 = 25 - 24 = 1;

3-й стовпець матриці ризиків:

r13 = 22 - 3 = 19; r23 = 22 - 22 = 0; r33 = 22 - 21 = 1; r43 = 22 - 6 = 16;

4-й стовпець матриці ризиків:

r14 = 15 - 6= 9; r24 = 15 - 9 = 6; r34 = 15 - 10 = 5; r44 = 15 - 15 = 0;

5-й стовпець матриці ризиків:

r15 = 12 - 12 = 0; r25 = 12 - 4 = 8; r35 = 12 - 9 = 3; r45 = 12 - 3 = 9;

Ai

П1

П2

П3

П4

П5

A1

2

0

19

9

0

A2

9

17

0

6

8

A3

0

19

1

5

3

A4

10

1

16

0

9

Ai

П1

П2

П3

П4

П5

max(aij)

A1

2

0

19

9

0

19

A2

9

17

0

6

8

17

A3

0

19

1

5

3

19

A4

10

1

16

0

9

16

Вибираємо з (19,17,19,16,) мінімальний елемент min=16

Висновок: вибираємо стратегію N=4.

Критерій Гурвіца:

Критерій Гурвіца є критерієм песимізму – оптимізму. За оптимальну приймається та стратегія, для якої виконується співвідношення:

max(si)

де si = y min(aij) + (1-y)max(aij)

При у=1 отримаєм критерій Вальде, при у=0 – оптимістичний критерій (максімакс).

Критерій Гурвіца враховує можливість як і найгіршого, так і найкращого для людини стану природи.

Вибір Y: чим гірші наслідки помилкових рішень, тим більше бажання застрахуватись від помилок, тим Y ближче до 1.

Розрахунок Si:

Згідно умови завдання коефіцієнт y=0.5;

s1 = 0.5•3+(1-0.5)•25 = 14

s2 = 0.5•3+(1-0.5)•22 = 12.5

s3 = 0.5•6+(1-0.5)•21 = 13.5

s4 = 0.5•2+(1-0.5)•24 = 13

Ai

П1

П2

П3

П4

П5

min(aij)

max(aij)

y min(aij) + (1-y)max(aij)

A1

10

25

3

6

12

3

25

14

A2

3

8

22

9

4

3

22

12.5

A3

12

6

21

10

9

6

21

13.5

A4

2

24

6

15

3

2

24

13

Вибираємо з (14,12.5,13.5,13,) максимальний елемент max=14

Висновок: вибираємо стратегію N=1.

Таким чином, у результаті рішення статистичної гри за різними критеріями частіше за інших рекомендувалася стратегія A3.

Висновок

Під час виконання цієї лабораторної роботи я навчився розвязувати графічно задачі з теорії ігор та обирати найкращі альтернативи за критеріями Вальда, Севіджа, Гурвіца та Лапласа.


 

А также другие работы, которые могут Вас заинтересовать

52024. Повторення таблиць множення числа 2 і ділення на 2. Розв’язування задач 434 KB
  Розвязування задач. Хмельницький Мета: Повторити таблиці множення числа 2 і ділення на 2; формувати вміння розвязувати прості і складені задачі; розвивати увагу творче мислення память; виховувати інтерес до математики. а Пояснити розвязання задачі № 678. в Пояснити розвязання задачі яку виконували за бажанням за карткою.
52025. Збірник прикладних задач «Математика навколо нас» 3.75 MB
  Анотація Ідея створення цього збірнику виникла з приводу того що розвиток математичних знань у розумово відсталих дітей має виключно практичну важливість оскільки людині в повсякденному житті постійно доводиться оперувати арифметичними виразами здійснювати рахунок і різні операції з числовими величинами. Скільки грошей він отримає пропрацювавши 20 днів Який розфасовки пральний порошок вигідніше купити господині якщо відомо що пакет вагою 2кг 400 г коштує р. Скільки...
52026. Вправи і задачі на засвоєння таблиць додавання і віднімання числа Порівняння виразу і числа 58.5 KB
  Діти в народі говорять: Добрий гість дому радістьâ. 2 слайд Математична розминка Інтерактивна вправа Мозковий штурм Як називається геометрична фігура у якої три кути Який день настає після суботи Скільки сторін у квадрата Скільки місяців триває зима Як називається лінія у якої є початок і кінець  Закінч речення: тиждень триває  Скільки паличок потрібно щоб викласти 2 квадрати Молодці 2. Математичний диктант Слайди 412....
52027. Таблица умножения и деления на 7 72 KB
  Гномики обожают число 7 и надеются что его полюбите и вы Что в вашей жизни связано с числом 7 Чего бывает в жизни только 7 Вы знаете что число 7 на Руси издревле считалось волшебным. Братья Гримм Умницы Первый гномик еще мал и любит играть. Гномик хочет познакомиться с вами. 21 : 3 = 7 21 : 7 = 3 назовите компоненты Третий гномик любит решать уравнения.
52028. Наш край у 1932-1933 роках. Історія Маньківщини 57.5 KB
  Хід уроку: Епіграф: Нагадай мені інший народ щоб він зазнав такої чорної недолі як народ український Учитель української мови і літератури Відкосили косами Жниварі з ЦК А ми хліба просимо Аж болить рука Встали під закопами Ух тверді лоби.Проценко Голодомор Учитель історії: Радянське керівництво взявши курс на модернізацію промислового потенціалу країни одразу зіткнулося з трьома проблемами: коштів сировини й робочих рук для розвитку індустрії. Учитель української мови та літератури: Перед вами картина...
52029. По следам бременских музыкантов. Числа от 11 до 20 173.5 KB
  И был у мельника осёл хороший осёл умный и сильный. Долго работал осёл на мельнице таскал на спине кули с мукой и вот наконец состарился.Чтение отрывка из сказки Видит хозяин: ослабел осёл не годится больше для работы и выгнал его из дому. Испугался осёл: âКуда я пойду куда денусь Стар я стал и слабâ.
52030. Множення дробів. Піднесення дробу до степеня 239 KB
  Мета: домогтися засвоєння учнями правил множення раціонального дробу на цілий вираз на дріб а також правила піднесення раціонального дробу до натурального степеня та виконання сумісних дій піднесення дробу до степеня та множення раціональних дробів; формувати вміння відтворювати вивчені правила та застосовувати їх під час виконання завдань на множення раціональних дробів та піднесення дробу до степеня; вдосконалювати вміння виконувати скорочення раціональних дробів та знаходити ОДЗ дробового виразу; розвивати мислення...
52031. Короткі історичні відомості (від абака до нетбука) 1.09 MB
  Обладнання: мультимедійне обладнання: проектор екран або мультимедійна дошка; програмний комплекс презентація PowerPoint Як винайшли компютер підручник робочі зошити інструкція з правил техніки безпеки. Робота за компютером 8 хв. Саме в Києві був створений перший в Європі компютер який умів швидше за всіх рахувати А чи завжди існували компютери Якими вони були в давнину Про це ми дізнаємося на сьогоднішньому уроці. Вчитель презентує у електронному вигляді новий матеріал Як винайшли компютер.