8870

Изучение криволинейного движения

Лабораторная работа

Физика

Изучение криволинейного движения. Цель работы: Определить нормальное ускорение и центробежную силу инерции при вращательном движении. Приборы и оборудование: 1.Установка для изучения криволинейного движения. 2. Секундомер. Методические ук...

Русский

2013-02-19

63.5 KB

23 чел.

Изучение криволинейного движения.

Цель работы: Определить нормальное ускорение и центробежную силу инерции при вращательном движении.

Приборы и оборудование: 1.Установка для изучения криволинейного движения.

 2. Секундомер.

Методические указания

Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции Fин при этом должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а΄, каким оно обладает в неинерциальных системах отсчета, т.е.

                                             (1)

Так как F=ma (а – ускорение тела в инерциальной системе отсчета), то

ma΄=ma+Fин.

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;           3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим тележку, на которой закреплен шарик.

Если тележку привести в поступательное движение с ускорением а0, то нить начнет отклоняться от вертикали назад до такого угла , пока результирующая сила F=P+T  не обеспечит ускорение шарика, равное а0. Таким образом, результирующая сила F направлена в сторону ускорения тележки а0 и для установившегося движения шарика (шарик теперь


движется вместе с тележкой с ускорением
а0 ) равна , откуда

т.е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки. Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F  уравновешивается равной и противоположно направленной ей силой Fи, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

Fи=-ma0.                                                        (2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях.

Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к стенке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

При вращении маятника на диске на него действует сила, равная  и направленная перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы натяжения нити Т: F=P+T. Когда движение шарика установится, то  откуда

т.е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fц, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила Fц, называемая центробежной силой инерции, направлена по горизонтали от оси вращения диска и равна

                                     (3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и    т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т.д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север (рис.1), то действующая на него сила Кориолиса, будет направлена вправо по отношению к направлению движения, т.е. тело несколько отклонится на восток.

Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т.е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые и т.д. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60  это отклонение должно составлять 1см при падении с высоты 100м.

С  силой Кориолиса связано поведение маятника Фуко, явившееся в свое время  одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

Сила Кориолиса

      (4)

Раскрывая содержание Fин в формуле (1), получим основной закон динамики для неинерциальных систем отсчета:

ma =F+Fи+Fц+Fк,

где силы инерции задаются формулами (2) и (4).


Порядок выполнения работы

Распишем силы действующие на тело

 (ІІ закон Ньютона)

Построим проекции на оси координат:

OX:

OY: ;  .

       1. Найдем нормальное ускорение:

=

;  a =  gtg

2. Найти центростремительную силу:

Fи = maп

3. Найти радиус вращения тела : R = l sin

4. Найти скорость вращения тела

;  

5. Найти частоту вращения тела:

;  

6. Период вращения:

7. Угловую скорость:

8. Сделать расчеты и занести в таблицу:


Таблица

опыта

m,кг

l,м



R, м

Fц.б.,Н

an, м/с2

ν, 1/c

Т,с

-1

1

2

3

4

5

Контрольные вопросы

  1.  Что называется угловой скоростью? Угловым ускорением? Как определяется их направление?
  2.  Когда и почему необходимо рассматривать силы инерции?
  3.  Что такое силы инерции? Чем они отличаются от сил, действующих в инерциальных системах отсчета?
  4.  Как направлены центробежная сила инерции и сила Кориолиса? Когда они проявляются?


 

А также другие работы, которые могут Вас заинтересовать

77292. Human-aware content elements as a base for website backend interfaces 24.5 KB
  This is especilly importnt for hosted CMS services becuse there is no personl trining provided for the user. For exmple to dd vcncy on site user often should perform the following steps: crete pge crete nd formt vcncy description dd links to tht pge from min menu nd dd nnounce to compnys news. So user wstes his time nd even my leve the service. t the beginning of site cretion process user is sked for his compny type: rel estte cr rentl DVD store etc.
77293. ВИЗУАЛИЗАЦИЯ ТРАССЫ ВЫПОЛНЕНИЯ ПАРАЛЛЕЛЬНЫХ ПРОГРАММ 32.5 KB
  В литературе можно найти самые разные подходы к визуализации трасс выполнения параллельных программ. В докладе мы приведем как обзор существующих решений так и предложения по новым подходам к разработке средств визуализации трасс. Поэтому приемы хорошо помогавшие при визуализации данных лет двадцать назад например использование Visul Informtion Seeking Mntr ldquo;Overview first zoom nd filter then detilsondemndrdquo; не срабатывают. Активно используются методы визуализации трассы выполнения на базе разнообразных метафор...
77294. ВИЗУАЛЬНАЯ ПОДДЕРЖКА РАСПАРАЛЛЕЛИВАНИЯ ПОСЛЕДОВАТЕЛЬНОГО КОДА 26.5 KB
  Представляется что создание вспомогательных визуальных сред поддержки распараллеливания программ сможет облегчить работу специалистов и увеличить эффективность и надежность распараллеливания. Нами разработан макет средств визуальной поддержки распараллеливания в двух вариантах параллелизма на основе общей памяти и параллелизма на основе передачи сообщений с использованием библиотек OpenMP и MPI соответственно. Предполагается что пользователь по ходу анализа и обработки текста вносит изменения в текст последовательной программы для ее...
77295. Конструктор специализированных систем визуализации 1.13 MB
  Статья посвящена разрабатываемой авторами системы научной визуализации. Схема процесса визуализации Средства научной визуализации разделяются на три класса: Универсальные системы которые включают широкий набор алгоритмов построения различных типовых представлений. Например это известные системы PrView и VS. Универсальноспециализированные системы ориентированные на визуализацию объектов определенного типа.
77296. ОПЫТ РАЗРАБОТКИ СПЕЦИАЛИЗИРОВАННЫХ СИСТЕМ НАУЧНОЙ ВИЗУАЛИЗАЦИИ 3.19 MB
  Универсальные и специализированные системы визуализации. Примеры специализированных систем научной визуализации. Система визуализации модели анализа загрязнения окружающей среды
77297. ЗАДАЧИ ИЗУЧЕНИЯ ФАКТОРА ПРИСУТСТВИЯ В СРЕДАХ ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ 719 KB
  Присутствие является одним из основных факторов при изучении и проектировании сред виртуальной реальности. Дело в том что полноценное присутствие переживаемое как ощущение своего пребывания там в созданной компьютером реальности кажется очень похожим на измененное состояние сознания ИСС. Данная система на базе среды виртуальной реальности была создана в Джорджийском Технологическом Институте Атланта США с целью изучения социального поведения горилл с помощью моделирования их поведения участниками экспериментов...
77298. ПСИХОЛОГИЯ КАК ИНСТРУМЕНТ РАЗРАБОТКИ МАССОВЫХ И ПРОФЕССИОНАЛЬНЫХ ИНТЕРФЕЙСОВ 39 KB
  Теория деятельности связана прежде всего с именами Леонтьева и Рубинштейна. При анализе деятельности предшествующем проектированию интерфейса необходимы выявление целей деятельности способов достижения той или иной цели установление уровня понимания этой цели работником определение его мотивов. Согласно теории деятельности устанавливается иерархия: деятельность осознанные действия операции. Деятельностный подход к проектированию человеко-компьютерного взаимодействия предполагает анализ поставленной задачи и описание деятельности...
77299. К поиску психологических оснований изучения человеко-компьютерного взаимодействия 25 KB
  Рассмотрим в качестве примера проблемы возникающие в связи с использованием средств виртуальной реальности для создания специализированных систем научной визуализации. Зачастую понятие виртуальной реальности в СМИ и даже частично в научной литературе используется в смысле любого порождения современных компьютерных программ игр интернета и пр. Наиболее изученным является применение виртуальной реальности в обучающих целях когда среда виртуальной реальности используется в качестве тренажера на котором отрабатываются необходимые в...
77300. Некоторые методы многомерной визуализации 835.5 KB
  Однако если результат есть многомерное множество то в настоящее время нет ответа на вопрос как в общем случае получать визуальное представление множества для понимания его структуры. Как правило в каждой конкретной задаче исследователя интересует вполне конкретная информация о структуре численно полученного им множества M. С другой стороны исследователь часто знает априорные данные о строении множества. Поэтому есть надежда что можно разработать конкретный метод представления многомерного множества с помощью которого исследователь был бы...