89129

Численное решение систем дифференциальных уравнений

Контрольная

Информатика, кибернетика и программирование

В процессе выполнения данной контрольной работе была написана программа Matlab, основной задачей которой является решение системы ОДУ методом Рунге-Кутты 4-5 порядка. Система ОДУ была решена по уравнениям и данным, заданным согласно варианту.

Русский

2015-05-09

392.63 KB

10 чел.

Министерство образования и науки РФ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ

Кафедра «Прикладная математика и исследование операций в экономике»

КОНТРОЛЬНАЯ РАБОТА № 1 (13ИС2б)

по дисциплине «Дискретная математика. Методы оптимизации. Численные методы»

на тему «Численное решение систем дифференциальных уравнений»

Вариант № __

Автор работы:              ____________________________

Специальность:                                       _____________________________

Группа:       __________________________

Руководитель:      _____________________________

Работа защищена «__»_____20__г.  Оценка _______________

2014 г.

Содержание

Введение 3

1. ПОСТАНОВКА ЗАДАЧИ 3

2. Теоретические сведения 5

2.1 Метод Рунге–Кутты 5

2.2 Априорный выбор шага интегрирования 5

3. Решение задания 7

Вывод 10

Список литературы 10

Приложение А – Текст программы 11

Приложение Б – Таблица погрешности 12


Введение

В процессе выполнения данной контрольной работе была написана программа Matlab, основной задачей которой является решение системы ОДУ методом Рунге-Кутты 4-5 порядка. Система ОДУ была решена по уравнениям и данным, заданным согласно варианту. Также было реализовано решение системы ОДУ стандартным решателем MATLAB – функцией ode45. Результат ее решения сравнен с результатом написанной программы в точке T/2. Относительные погрешности, полученные в результате сравнения, занесены в таблицу погрешностей. Также был создан видеофайл формата avi с помощью функции VideoWritter, в котором показано движение точки в декартовой системе координат. Данный видеофайл был записан на диск формата DVD-RW.

1. ПОСТАНОВКА ЗАДАЧИ

Цель работы.

Научиться решать системы обыкновенных дифференциальных уравнений в программе Matlab, научиться реализовывать алгоритмы шага интегрирования, строить трехмерный график движения точки в декартовой системе координат и реализовывать график движения в видеофайле.

Задание на контрольную работу.

  1.  Решить заданную систему обыкновенных дифференциальных уравнений (ОДУ) методом Рунге - Кутты 4-5-го порядка, разработав собственную программу в Matlab в виде m-файла, а также решить задачу с помощью решателя Matlab (использовать как эталонное решение).
  2.  В разработанной программе реализовать выбор шага интегрирования по алгоритмам, приведенным в соответствии с заданным вариантом. При решении стандартным решателем Matlab, использовать автоматический шаг.
  3.  Решение, полученное с помощью разработанной программы, сравнить с эталонным решением в точке. Результаты сравнения представить в виде таблицы относительных погрешностей решения. Сделать выводы о точности решения.
  4.  Построить отдельно графики , , , а также трехмерный график движения точки в декартовой системе координат средствами Matlab.
  5.  Создать видеофайл решения задачи, используя функцию VideoWriter: движение точки в трехмерной декартовой системе координат (представить на CD).

Индивидуальное задание.

№ п/п

Система ОДУ

Начальные условия

Граничные условия

Метод выбора шага интегрирования

24

0.0

0.1

0.0

6.0

Априорный


2. Теоретические сведения

2.1 Метод Рунге–Кутты

Методы Рунге — Кутты — важное семейство численных алгоритмов решения обыкновенных дифференциальных уравнений и их систем. Данные итеративные методы явного и неявного приближённого вычисления были разработаны около 1900 года немецкими математиками К. Рунге и М. В. Куттой.

Формально, методом Рунге — Кутты является модифицированный и исправленный метод Эйлера, они представляют собой схемы второго порядка точности. Существуют стандартные схемы третьего порядка, не получившие широкого распространения. Наиболее часто используется и реализована в различных математических пакетах стандартная схема четвёртого порядка. Иногда при выполнении расчётов с повышенной точностью применяются схемы пятого и шестого порядков. Построение схем более высокого порядка сопряжено с большими вычислительными трудностями. Методы седьмого порядка должны иметь по меньшей мере девять стадий, в схему восьмого порядка входит 11 стадий. Хотя схемы девятого порядка не имеют большой практической значимости, неизвестно, сколько стадий необходимо для достижения этого порядка точности. Аналогичная задача существует для схем десятого и более высоких порядков.

Метод Рунге — Кутты четвёртого порядка столь широко распространён, что его часто называют просто методом Рунге — Кутты. Рассмотрим задачу Коши:

Тогда приближенное значение в последующих точках вычисляется по итерационной формуле:

Вычисление нового значения проходит в четыре стадии:

где  — величина шага сетки по .

Этот метод имеет четвёртый порядок точности, то есть суммарная ошибка на конечном интервале интегрирования имеет порядок  (ошибка на каждом шаге порядка ).

2.2 Априорный выбор шага интегрирования

Величина x0 (значение решения в узле, для которого выбирается шаг h), ε, ∆ (допустимые относительная и абсолютная погрешности) считаются заданными. Вначале вычисляются масштабирующие множители αi, i [1 : n], если она задана пользователем, иначе:

Затем вычисляется величина τ:

1/u, 1/v вычисляются интерполированием, ρ = ρ(α) и h = τρ.


3. Решение задания

Программа запускается в файле b2.m. Сначала была объявлена функция a2 с добавлением трех дифференциальных уравнений из файла a2, начальные условия, граничные условия и точность интегрирования. Далее функция запускается с учетом объявленных значений. Также в файле b2.m выполняется графическая часть работы. Сначала строятся графики с приближенными значениями функций f(x), f(y), f(z) по отдельности.

Рисунок 1 – сравнение метода Рунге-Кутты с функцией ode45 по уравнению X(T).

Рисунок 2 – сравнение метода Рунге-Кутты с функцией ode45 по уравнению Y(T).

Рисунок 3 – сравнение метода Рунге-Кутты с функцией ode45 по уравнению Z(T).

Затем была объявлена функция реализующая решение ОДУ стандартным решателем MATLAB (функция ode45). После вычислений был построен график по полученным значениям.

Далее был создан видеофайл формата avi с помощью функции VideoWriter и открывается для того, чтобы вписать в него информацию. В цикле for для всех приближенных значений функций f(x), f(y), f(z) создаем трехмерный график и добавляем точку, которая должна двигаться по полученной трехмерной декартовой системе координат. В цикле были заданы координаты точки относительно каждой оси, по которым она должна двигаться. В конце файла b2.m файл закрывается. Видеофайл с движением точки в декартовой системе координат был записан на диск формата DVD-RW.

Рисунок 4 – декартова система координат движения точки.

В файле a2.m (функции) были заданы три функции, составляющие систему дифференциальных уравнений и алгоритм решения ОДУ стандартным решателем MATLAB (функция ode45). и основной цикл программы численного решения системы ОДУ. Как начальное условие были введены три заданные функции для решения ОДУ, границы диапазона уравнений, точность решения, начальный шаг интегрирования и начальные условия x(0), y(0), x(0), которые записаны в запускающем файле b2.m. Основной цикл while выполняется до тех пор, пока диапазон не сдвинется к верхней границе. Далее идет вложенный цикл for, который работает до тех пор, пока логическое значение истинно. Сначала берется исходный шаг h и по нему высчитывается значение производных функций до производной 4 порядка по формулам:

Далее высчитывалось приближенное значение трех дифференциальных уравнений в последующих точках по формуле: . Далее идет вычисление априорного шага интегрирования и новых значений для следующей итерации.


Вывод

В процессе выполнения контрольной работы была разработана реализация системы обыкновенных дифференциальных уравнений в программе Matlab, алгоритма шага интегрирования, трехмерного графика движения точки в декартовой системе координат и реализация графика движения в видеофайле.

Список литературы

1) Шампайн Л. Ф., Гладвел И., Томпсон С. Решение обыкновенных дифференциальных уравнений с использованием MATLAB: Учебное пособие. 1-е изд. – СПб.: Лань, 2009, 304 с.

2) Чарльз Генри Эдвардс, Дэвид Э. Пенни. Дифференциальные уравнения и краевые задачи: моделирование и вычисление с помощью Mathematica, Maple и MATLAB. 3-е издание. – Диалектика-Вильямс, 2007, 450 с.

3) Е. Р. Алексеев, О. В. Чеснокова Решение задач вычислительной математики в пакетах Mathcad 12, MATLAB 7, Maple 9. Серия: Самоучитель. – М.: НТ Пресс, 2006,496 стр.


Приложение А – Текст программы

Файл a2.m

function [x, y, te, ye] = a2(f,x,h0,y0,e)

function с2 = div(t,Y)

% далее запишем систему ДУ

dy = ones(length(y),1);

dy(1) = y(1)*cos(y(2))-y(3);

dy(2) = sqrt(abs(y(2)^2-y(1)^3))+3*y(3);

dy(3) = y(2)^2*sin(y(1))+0.1;

end

% f - имя функции системы,y0 - начальные условия

% x - интервал времени

% ho - начальный шаг интегрирования

% e - точность

jmax = 1000;

h    = h0;

j    = 1;

while j < jmax

   N    = length(y0);

   H    = max(x);

   n  = ceil((H-x(1))/h);

   y  = zeros(N,n+1);

   x(1) = min(x);

   for k=1:1:N

       y(k,1) = y0(k);

   end

   for i=1:1:n

       x(i+1) = x(i) + h;

   end

   for i=2:1:n+1

       k1 = h.*f(x(i-1),y(:,i-1));

       k2 = h.*f(x(i-1)+h/2,y(:,i-1)+k1/2);

       k3 = h.*f(x(i-1)+h/2,y(:,i-1)+k2/2);

       k4 = h.*f(x(i),y(:,i-1)+k3);

       dy = (k1 + 2*k2 + 2*k3 + k4)/6;

       y(:,i) = y(:,i-1) + dy;

   end

   L(j) = n+1;

   if j ~= 1

      for i3=1:1:N

          M(i3) = max(abs(Y2(i3,:) - Y1(i3,:)));

          M11(i3) = max(abs(y(i3,:)));

          M22(i3) = max(abs(y(i3,:)));

      end   

      M1 = max(M11);

      M2 = max(M22);

      for i1=1:1:N

          for i2=1:1:L(j-1)

              Y2(i1,i2) = y(i1,2*i2-1)/M2;

          end

          for i2=1:1:L(j)

           Y1(i1,i2) = y(i1,i2)/M1;

       end

      end   

   end

   if (j > 1) && (max(M) <= e)

       break;

   end

   h = h/2;

   j = j+1;

end

x = x';

y = y';

te = x(n+1);

ye = y(n+1,:);

end

Файл b2.m

[t,Y,te1,ye1]  = a2(@div,[0 6],0.2,[0, 0.1, 0],0.01);

figure('NumberTitle', 'off', 'Name', 'Метод Рунге-Кутта (X(T))')

title('Метод Рунге-Кутта (X(T))')

legend('X(T)');

plot(t,Y(:,1),'k');         

grid on;

xlabel('T');

ylabel('X');

figure('NumberTitle', 'off', 'Name', 'Метод Рунге-Кутта (Y(T))')

title('Метод Рунге-Кутта (Y(T))')

legend('Y(T)');

plot(t,Y(:,2),'b');         

grid on;

xlabel('T');

ylabel('Y');

figure('NumberTitle', 'off', 'Name', 'Метод Рунге-Кутта (Z(T))')

title('Метод Рунге-Кутта (Z(T))')

legend('Z(T)');

plot(t,Y(:,3))         

grid on;

xlabel('T');

ylabel('Z');

 

[x, y, te2, ye2] = ode45(@div,[ [0 6],[0, 0.1, 0]); % решение через ode45

figure('NumberTitle', 'off', 'Name', 'ode45 (X(T))')

title('ode45 (X(T))')

plot(x, y(:,1))

legend('X(T) ode45');

grid on;

xlabel('T');

ylabel('X');

figure('NumberTitle', 'off', 'Name', 'ode45 (Y(T))')

title('ode45 (Y(T))')

plot(x, y(:,2))

legend('Y(T) ode45');

grid on;

figure('NumberTitle', 'off', 'Name', 'ode45 (Z(T))')

title('ode45 (Z(T))')

plot(x, y(:,3))

legend('Z(T) ode45');

grid on;

 

t=[0 6];                              % границы

[x, y, te, ye] = ode45(@div,t,[0, 0.1, 0]);

figure('NumberTitle', 'off', 'Name', 'Метод Рунге-Кутта (движение точки)')

mov = VideoWriter('rgr.avi');       % создание видеофайла

mov.FrameRate = 25;

open(mov);

for i = 1:length(T)

   plot3(Y(:,1),Y(:,2),Y(:,3),'-k',...  % построение графика

       Y(i,1),Y(i,2),Y(i,3),'*r')

   view(-38+0.1*i,26+0.1*i)

   view( [ 15 , 25 ] )

   xlim([min(Y(:,1)), max(Y(:,1))])

   ylim([min(Y(:,2)), max(Y(:,2))])

   zlim([min(Y(:,3)), max(Y(:,3))])

   grid on

   title(['T=',num2str(T(i),'%1.3f'),])

   % заголовок графика со значением Т

   xlabel('X(T)')

   ylabel('Y(T)')

   zlabel('Z(T)')

   F = getframe(gcf);

   writeVideo(mov,F);    % запись видео

end

close(mov);

Приложение Б – Таблица погрешности

Функция ode45

Собственная функция

Относительная погрешность (%)

X(t)

-1.763379798047849

-1.763118495173552

0.999852

Y(t)

0.004430856890985

0.004528856919895

1.022118

Z(t)

-0.006494568945723

-0.006351795448609

0.978017

Вывод: погрешность собственной функции, реализующей метод Рунге-Кутты, не превышает 1,02 %.


 

А также другие работы, которые могут Вас заинтересовать

15647. Автономная археология в историческом синтезе и эмергентизм 424 KB
  Лекция 33. Автономная археология в историческом синтезе и эмергентизм 1. На руинах археологии обитания. В 1947 г. на конференции в Гамбурге собравшимся немецким археологам было сказано: Сегодня наша преистория прежде всего стоит перед задачей привести в порядок сп
15648. Реболлинг (восстановление шариковых выводов) BGA компонентов (чипов) 446.5 KB
  Реболлинг восстановление шариковых выводов BGA компонентов чипов Рис.1 Примеры выполненных трафаретов для восстановления шариков BGA Рис.2 Восстановленные шариковые выводы BGA чипа Необходимое оборудование Сушка рекомендуется для подсушки ком
15649. ДОМАШНИЙ АРЕСТ КАК МЕРА ПРЕСЕЧЕНИЯ В УГОЛОВНОМ ПРОЦЕССЕ 36.95 KB
  ДОМАШНИЙ АРЕСТ КАК МЕРА ПРЕСЕЧЕНИЯ В УГОЛОВНОМ ПРОЦЕССЕ А. АЛЕКСАНДРОВ Александров Александр профессор Нижегородской академии МВД России доктор юридических наук профессор. Федеральный закон от 7 декабря 2011 г. N 420ФЗ содержит новую редакцию ст. 107 УПК РФ рег
15650. УГОЛОВНО-ПРОЦЕССУАЛЬНЫЕ ГАРАНТИИ ОБЕСПЕЧЕНИЯ РЕАЛИЗАЦИИ ПРАВ НЕСОВЕРШЕННОЛЕТНИХ ПОТЕРПЕВШИХ 23.94 KB
  УГОЛОВНОПРОЦЕССУАЛЬНЫЕ ГАРАНТИИ ОБЕСПЕЧЕНИЯ РЕАЛИЗАЦИИ ПРАВ НЕСОВЕРШЕННОЛЕТНИХ ПОТЕРПЕВШИХ М.Ю. АРЧАКОВ В статье автором рассмотрены теоретические вопросы касающиеся проблем совершенствования уголовнопроцессуального порядка реализации в отечественном у...
15651. РАЗУМНЫЙ СРОК КАК ОЦЕНОЧНОЕ ПОНЯТИЕ В УГОЛОВНО-ПРОЦЕССУАЛЬНОМ ПРАВЕ 30.83 KB
  РАЗУМНЫЙ СРОК КАК ОЦЕНОЧНОЕ ПОНЯТИЕ В УГОЛОВНОПРОЦЕССУАЛЬНОМ ПРАВЕ М.Т. АШИРБЕКОВА Ф.М. КУДИН В процессе своего реформирования уголовнопроцессуальное законодательство обогащается дополнительными приемами законодательного регулирования уголовнопроцессуаль
15652. Бедный средний класс 28 KB
  Бедный средний класс В июне обнародован доклад Малообеспеченные в России: кто они как живут к чему стремятся подготовленный Институтом социологии РАН в сотрудничестве с московским представительством Фонда имени Фридриха Эберта. Согласно этому докладу самой массо...
15653. РЕАЛИЗАЦИЯ ПОЛОЖЕНИЙ СТ. 6.1 УПК РФ В СВЕТЕ ПРАВОВЫХ ПОЗИЦИЙ ЕВРОПЕЙСКОГО СУДА ПО ПРАВАМ ЧЕЛОВЕКА 29 KB
  РЕАЛИЗАЦИЯ ПОЛОЖЕНИЙ СТ. 6.1 УПК РФ В СВЕТЕ ПРАВОВЫХ ПОЗИЦИЙ ЕВРОПЕЙСКОГО СУДА ПО ПРАВАМ ЧЕЛОВЕКА С.В. ЮНОШЕВ Федеральным законом от 30.04.2010 Уголовнопроцессуальный кодекс РФ был дополнен новой ст. 6.1 Разумный срок уголовного судопроизводства. В УПК введено общее ...
15654. Экологическое сознание 56.5 KB
  Экологическое сознание Научнотехническая революция... посулив золотые горы и дав многое из того чем мы ныне гордимся породила иные ранее неведомые проблемы. Решить их на путях проторенных уже не представляется возможным. В.Р.Арсеньев. Звери = боги = люди Еще древни...
15655. Символические границы детства 42 KB
  Символические границы детства Федянина М. В. В обыденном сознании существуют понятия €œребенок€ €œдети€ €œдетство€. Существует необходимость исследовать детство как социокультурный феномен. Социокультурная модель детства включает в себя следующие компоненты:...