8925

Отработка заданных режимов системы позиционирования при переменном моменте инерции нагрузки и следующих вариациях параметров объекта

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель работы: Целью работы является отработка заданных режимов системы позиционирования при переменном моменте инерции нагрузки и следующих вариациях параметров объекта. - коэффициент жесткости с упругого звена - посто...

Русский

2013-02-19

131.5 KB

2 чел.

  1.  Цель работы:

Целью работы является отработка заданных режимов системы позиционирования при переменном моменте инерции нагрузки и следующих вариациях параметров объекта.

  1.  – коэффициент жесткости «с» упругого звена;
    1.   – постоянная времени цепи якоря двигателя «Т»;
    2.   – коэффициент вязкого трения двигателя «g»; коэффициент вязкого трения внешней кинематики «gk»;
    3.   – при наличии нелинейности в виде звена с зоной нечувствительности;
    4.   – при наличии звена с зоной насыщения;
    5.   – при наличии нелинейности в виде сухого трения;
    6.   – при наличии звена с люфтом в кинематической цепи.

  1.  Исходные данные:

Система позиционирования предназначена для управления следующими подвижными звеньями робота:

- Предплечье.

п/п

Масса

Груза

mн (кг)

Предплечье

(м)

m

(кг)

(р/с)

с

(Нм/р)

1

10

0.3

3,0

2,5

104

Задание: Кисть - =0,3 м. – длина звена;

                            m=3 кг. – масса звена;

                            =2,5 р/с – угловая скорость поворота;

                            с=104 Нм/р – коэффициент жесткости кинематической цепи;

                            =10 кг – масса груза.

Скоростная добротность 300.

Перерегулирование отсутствует.

Варьируемый параметр – постоянная времени якоря.

Рис 1.Блок – схема позиционирования.

У – усилитель;

Д – двигатель;

ДП – датчик положения;

Тг – тахогенератор.

Исполнительный орган робота. Рис2.

Центр массы каждого звена лежит в его середине.

где:

l1= lk=0,3 м

m1= m=3 кг

Gн= mн=10 кг

Нм

Вт =0,195 кВт

Выбираем двигатель:

Характеристики

Тип двигателя

ДПМ-1.6-110

Полезная мощность Р, (кВт)

0,25

Номинальный момент М, (Н*м)

                                1.6

Частота вращения n, (об/мин)

2500

Напряжение U, (В)

110

Ток якоря I, (А)

4.5

Сопротивление якоря R, (Ом)

2.3

Индуктивность L, (Гн)

0.0075

Момент инерции J, (кг*м)

0.002

Крутизна характеристики тахогенератора (мВ*мин/об)

20

Класс точности тахогенератора

1.0

Рассчитаем передаточное число редуктора. Передаточное число определяется дважды:

- из необходимости обеспечить подвижному звену угловую скорость .

В этом случае

- из необходимости обеспечить на подвижном звене максимальный момент нагрузки Мн.

В этом случае

Берем для дальнейших расчетов =50.

2.2. Расчет и приведение коэффициентов вязкого трения.

Нм

где Мпт – момент, идущий на преодоление вязкого трения в приводе и кинематике подвижного звена;

g’ – коэффициент вязкого трения цепи двигатель – редуктор;

gк’ - коэффициент вязкого трения в кинематической цепи подвижного звена;

- суммарный коэффициент вязкого трения.

Где g, gк и  - коэффициенты вязкого трения, приведенные к оси нагрузки.

Коэффициент вязкого трения, образованный действием против ЭДС двигателя, приведенный к оси нагрузки рассчитывается по формуле:

2.3. Расчет и приведение моментов инерции.

где  - момент инерции двигателя;

Где  - момент инерции подвижного звена.

Где  - момент инерции максимального груза в схватке.

2.4. Определение конструктивного коэффициента двигателя Сд.

2.5. Определение постоянной времени якорной цепи.

Где RВ – внутреннее сопротивление силового преобразователя, полагаем, что .

Определение критической постоянной якорной цепи и величины электромеханической добротности Q.

,

где:

Определение частоты собственных колебаний кинематической цепи подвижного звена:

а) без нагрузки:

б) с максимальным грузом в схвате:

3. Передаточная функция звеньев и структурная схема системы.

3.1. Датчик положения.

где:

кс=1,5 в/р – коэффициент преобразования датчика положения;

Тс=0,01 с – постоянная времени.

3.2. Усилитель.

где:

ку=129 в/р – коэффициент усиления усилителя; выбирается исходя из обеспечения заданной скоростной добротности D.

Ту=0,01 с – постоянная времени.

3.3. Двигатель.

Работа двигателя описывается следующими уравнениями:

Где  - частота вращения ротора двигателя, (рад/с);

I,U – номинальные значения напряжения и тока цепи якоря;

R,L – активное сопротивление и коэффициент самоиндукции обмотки якоря;

, - момент инерции и коэффициент вязкого трения ротора двигателя и редуктора;

Фб – магнитный поток двигателя.

3.4. Кинематическая цепь звена.

Без груза:

Jи=Jк , (gи=gк)

Jк=3.1521

С грузом:

Jи=Jк+ Jн         

Jи=9.8761


Министерство образования РФ

Санкт-Петербургский институт машиностроения (ВТУЗ-ЛМЗ)

Кафедра электроники, вычислительной техники и автоматизации

Лабораторная работа

Исследование работы системы позиционирования робота

Выполнила студентка гр. 6405

Азябина Т.Д.

Проверил

д.т.н., проф. Б.А.Петров

Санкт – Петербург

2006г.


Министерство образования РФ

Санкт-Петербургский институт машиностроения (ВТУЗ-ЛМЗ)

Кафедра электроники, вычислительной техники и автоматизации

Лабораторная работа

Исследование работы системы позиционирования робота

Выполнила студент гр. 6405

Антонышев Д.А.

Проверил

д.т.н., проф. Б.А.Петров

Санкт – Петербург

2006г.


Литература:

Исследование работы системы позиционирования робота, методические указания; составитель: д.т.н. проф. Б.А.Петров, Санкт-Петербург, 2002г.

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

42435. ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ 279.5 KB
  Начальные скорости электронов эмиссии различны. Это сказывается на характере спада анодного тока. Из-за неодинаковости начальных скоростей электронов радиусы кривизны их траекторий при одних и тех же величинах индукции магнитного поля различны. Поэтому резкий спад анодного тока происходит не при одном значении, а в достаточно широком интервале значений магнитной индукции.
42436. ИЗУЧЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПРИ ЗАРЯДКЕ И РАЗРЯДКЕ КОНДЕНСАТОРА В ЭЛЕКТРИЧЕСКОМ «R – C» КОНТУРЕ 559 KB
  Расчёт общего вида зависимости напряжения на конденсаторе от времени 5 2. Ветвью называется участок цепи в котором ток в любой данный момент времени имеет одинаковую величину. Расчёт электрических процессов в любой цепи требует умения вычислять зависимости от времени токов в ветвях и напряжения на элементах входящих в...
42437. ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ЯВЛЕНИЯ ВЗАИМНОЙ ИНДУКЦИИ 272 KB
  Если контур в котором индуцируется ЭДС состоит не изодного витка а из N витков например представляет собойсоленоид то поскольку витки соединяются последовательно будет равна сумме ЭДС индуцированных в каждом витке в отдельности: Величину называют потокосцеплением или полным магнитным потоком. Если поток пронизывающий каждый из витков одинаков то ЭДС индуцируемая в сложном контуре определяется формулой:...
42438. ГИСТЕРЕЗИС ФЕРРОМАГНЕТИКОВ 291.5 KB
  Зависимость намагниченности а также индукции от напряжённости поля нелинейна см. отставание индукции В в веществе от напряжённости Н намагничивающего поля. Если вначале он полностью размагничен то при монотонном увеличении напряжённости Н от нуля изменение индукции В происходит по начальной основной кривой намагничивания ОА см.
42439. Исследование механического движения при скатывании тел по отвесным нитям на установке Максвелла 237.51 KB
  Установка Максвелла представляет собой однородный диск, насаженный на цилиндрический вал, центры масс диска и вала лежат на оси вращения, на диск может насаживаться съёмное кольцо (в дальнейшем будем обозначать это устройство в целом «Диском Максвелла», а входящий в него отдельный элемент «диском».
42440. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЁРДОГО ТЕЛА ПРАВИЛЬНОЙ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ 207 KB
  Для измерения линейных величин пользуются различными приборами. Измерения длины производят также масштабными линейками. Если измерения длины выполняют с точностью до долей миллиметра то пользуются вспомогательной шкалой измерительного прибора нониусом.
42441. Electronics Workbench фирмы Interactive Image Technologies Ltd 517.61 KB
  Моделирующие программы широко используются в процессе проектирования радиоаппаратуры предприятиями, производящими современную электронную технику. Наибольшее распространение в мире получила программа PSpice фирмы MicroSim, ставшая де-факто стандартом профессиональной моделирующей программы для ПЭВМ.
42442. Параллельные интерфейсы: CENTRONICS 69 KB
  Параллельные интерфейсы как правило используют логические уровни ТТЛ транзисторнотранзисторной логики что ограничивает длину кабеля изза невысокой помехозащищенности ТТЛинтерфейса. Для подключения принтера по интерфейсу Centronics в PC был введен порт параллельного интерфейса так возникло название LPTпорт Line PrinTer построчный принтер.При высоком уровне принтер не воспринимает остальные сигналы интерфейса GND Общий провод интерфейса Традиционный порт SPP Stndrd Prllel Port является однонаправленным портом через...
42443. Последовательный интерфейс: RS-232C 686.5 KB
  Предварительные сведения Последовательный интерфейс: RS232C Последовательный интерфейс для передачи данных использует одну сигнальную линию по которой информационные биты передаются друг за другом последовательно. При асинхронной передаче каждому байту предшествует стартбит сигнализирующий приемнику о начале посылки за которым следуют биты данных и возможно бит паритета четности. Завершает посылку стопбит гарантирующий паузу между посылками рис. Стартбит следующего байта посылается в любой момент после стопбита...