89385

МНОГОДИАПАЗОННЫЕ ГЕНЕРАТОРЫ

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Генератор со стабильной амплитудой. Генератор гармонических сигналов, с частотами от 10 Гц до 100 кГц (рис. 9 10) обладает высокой стабильностью амплитуды Стабилизация амплитуды сигнала осуществляется с помощью полевого транзистора, включенного в цепь ПОС

Русский

2015-05-12

56.67 KB

1 чел.

МНОГОДИАПАЗОННЫЕ ГЕНЕРАТОРЫ


Двухчастотный генератор. Устройство (рис. 9.7) состоит из двух генераторов. Первый генератор, собранный на транзисторе ^ VT1, выдает сигнал с частотой 2 кГц, а второй (на транзисторе VT4) — сигнал с частотой 1 кГц. Генерация осуществляется посредством введения в цепь ОС четырехзвенной фазосдвигающей RС-цепи. Сигналы с генераторов суммируются на транзисторах VT2 и VT3, работающих на общую нагрузку. Резистором R7 можно регулировать амплитуду составляющих выходного сигнала.

^ Перестраиваемый звуковой генератор. Частотный диапазон генератора (рис. 98) лежит от 10 Гц до 100 кГц Он разбит на четыре поддиапазона: 10 — 100 Гц; 0,1 — 1 кГц; 1 — 10 кГц; 10 — 100 кГц. Амплитуда выходного сигнала 2 В. Коэффициент нелинейных искажений во всем диапазоне менее 1%. Неравномерность амплитудно-частотной характеристики менее 0,3 дБ Для стабилизации выходного напряжения включена цепь ООС R13, G5.Положительная обратная связь осуществляется посредством моста Вина.



Рис. 9.7 Рис. 9.8


Генератор на фазосдвигающих каскадах. В основу генератора (рис. 9 9) положен каскад с фазосдвигающей цепочкой. Транзистор ^ VT1 совместно с конденсаторами С1 — С4 и резисторами R3 и R4 осуществляют сдвиг гармонического сигнала определенной частоты на 90е. Второй фазосдвигающий каскад на VT3 производит дополнительный сдвиг на 90°. На транзисторах VT2 и VT4 выполнены развязывающие эмиттерные повторители, а на VT5 — усилитель по схеме с ОЭ. В результате на коллекторе транзистора VT5 фаза сигнала сдвинута по отношению к фазе сигнала на базе VT1 на 360° и при соединении их через С9, R13, R14 образуется ПОС. В генераторе возникают гармонические колебания. Частоту Mm колебаний можно менять регулировкой конденсаторов или резисторов фа-зосдвигающих цепочек В данном случае грубое изменение частоты осуществляется переключением конденсаторов С1 — C8, а плавное - резисторами R4 и R9. С помощью резистора R14 добиваются устойчивой амплитуды выходного сигнала В схеме можно применить интегральную микросхему К198НТЗ.



Рис. 9.9



Рис. 9.10



Рис 9.11


Генератор со стабильной амплитудой. Генератор гармонических сигналов, с частотами от 10 Гц до 100 кГц (рис. 9 10) обладает высокой стабильностью амплитуды Стабилизация амплитуды сигнала осуществляется с помощью полевого транзистора, включенного в цепь ПОС Управление полевым транзистором производится постоянным напряжением, которое формируется на конденсаторе С1 и усиливается ОУ DA2. Большой коэффициент передачи ОУ DA2 удерживает амплитуду гармонического сигнала с точностью до десятков милливольт в диапазоне от 1 до 9 В Регулировка амплитуды осуществляется потенциометром R9 Коэффициент гармоник выходного сигнала менее 0,1%.

^ Мостовой генератор. Генератор (рис. 911) формирует гармонические сигналы с частотами от 20 Гц до 200 кГц Частотно-задающим элементом являетсяRC-мост Изменение частоты производится дискретно с помощью конденсаторов и плавно с помощью резисторов R3 и R4. Существуют четыре диапазона- 20 — 200 Гц; ,0,2 — 2 кГц; 2 — 20 кГц; 20 — 200 кГц. Терморезистор R11 осуществляет автоматическую регулировку амплитуды колебаний и уменьшает нелинейные искажения. Выходное напряжение генератора составляет 1 В при коэффициенте гармоник 0,5%. На частотах меньше 50 Гц и больше 50 кГц коэффициент гармоник увеличивается ао 1%.</yr


 

А также другие работы, которые могут Вас заинтересовать

19124. Требования к твэлам и ТВС. Классификация твэлов 2.22 MB
  ЛЕКЦИЯ 4 Требования к твэлам и ТВС. Классификация твэлов Главной составляющей частью активной зоны любого гетерогенного реактора являются твэлы выделяющие энергию в виде тепла отводимую теплоносителем. Геометрические размеры и форма твэлов могут быть самыми разн
19125. Материалы тепловыделяющих элементов ЯЭУ 961.5 KB
  ЛЕКЦИЯ 5 Материалы тепловыделяющих элементов ЯЭУ Выбор материалов является существенным этапом в проектировании твэлов. Материалы наряду с конструкцией и условиями эксплуатации определяют работоспособность и надежность твэла. При выборе материалов твэла должн
19126. ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ 235.5 KB
  ЛЕКЦИЯ 6 ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ Тепловыделяющие элементы ядерных реакторов эксплуатируются в сложных условиях совместного воздействия радиационного излучения высоких температур механических напряжений и коррозионных сред. Выбор надежно...
19127. ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ 6.67 MB
  ЛЕКЦИЯ 7 ПРОБЛЕМЫ ОБОСНОВАНИЯ РАБОТОСПОСОБНОСТИ ТВЭЛОВ Работоспособность конструкции твэла может быть обоснована экспериментальными или расчетными методами. Экспериментальные методы обоснования работоспособности и надежности конструкции требуют массового обл
19128. РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУР ПО ВЫСОТЕ АКТИВНОЙ ЗОНЫ 134 KB
  ЛЕКЦИЯ 8 РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУР ПО ВЫСОТЕ АКТИВНОЙ ЗОНЫ РАСПРЕДЕЛЕНИЕ ЭНЕРГОВЫДЕЛЕНИЯ В АКТИВНОЙ ЗОНЕ Создание реактора с максимально выровненным и стабильным полем энерговыделения в течении кампании одна из важнейших задач оптимизации активной зоны. Выра...
19129. Компоновка и геометрические характеристики ТВС 608 KB
  ЛЕКЦИЯ 9 Компоновка и геометрические характеристики ТВС Для удобства перегрузок топлива транспортировки и организации охлаждения твэлы объединяются в ТВС. Основные требования к ТВС заключаются в следующем: обеспечение установленного физическим расчетом ре
19130. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТВС И ОБЪЕМНЫЙ СОСТАВ РАБОЧЕЙ ЯЧЕЙКИ 320 KB
  ЛЕКЦИЯ 10 ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТВС И ОБЪЕМНЫЙ СОСТАВ РАБОЧЕЙ ЯЧЕЙКИ В предыдущей лекции представлена методика определения диаметра твэлов и числа ячеек для их размещения в ТВС. Целью настоящей лекции является компоновка ТВС расчет ее геометрических х
19131. ТЕПЛОГИДРАЛИЧЕСКИЙ РАСЧЕТ ТВС 529.5 KB
  ЛЕКЦИЯ 11 ТЕПЛОГИДРАЛИЧЕСКИЙ РАСЧЕТ ТВС Теплогидравлический расчет ТВС реактора на быстрых нейтронах Рассмотрим ТВС реактора на быстрых нейтронах распределение тепловыделения в активной части которой подчиняется закону косинуса. Пусть даны геометрия ТВС
19132. ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС 374.5 KB
  ЛЕКЦИЯ 12 ДОПУСТИМАЯ МОЩНОСТЬ ТВЭЛА И ТВС Допустимая мощность твэлов и ТВС в стационарных условиях эксплуатации определяется: предельными температурами эксплуатации оболочки твэла и элементов конструкции ТВС: предельными температурами эксплуатации