89390

Кварцевые генераторы

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Прямой пьезоэффект состоит в том что механическая нагрузка на материал элемента вызывает появление электрического напряжения между соответствующими поверхностями элемента. Обратный пьезоэффект состоит в том что электрическое напряжение между соответствующими поверхностями элемента создаваемое с помощью внешнего источника напряжения вызывает появление механических напряжений которые могут изменять форму и размеры элемента. Например конденсатор может заряжаться до тех пор пока напряжение на нём не достигнет некоторого порогового...

Русский

2015-05-12

67.92 KB

5 чел.

Кварцевые генераторы

Как уже отмечалось, основу кварцевых генераторов составляют кварцевые резонаторы. Кварцевый резонатор — это пластинка кварца, закрепленная определенным образом в кварцедержателе и представляющая собой электромеханическую колебательную систему. Эти резонаторы относятся к пьезоэлектрическим элементам, принцип действия которых основан на использовании прямого и обратного пьезоэффекта. Прямой пьезоэффект состоит в том, что механическая нагрузка на материал элемента вызывает появление электрического напряжения между соответствующими поверхностями элемента. Обратный пьезоэффект состоит в том, что электрическое напряжение между соответствующими поверхностями элемента, создаваемое с помощью внешнего источника напряжения, вызывает появление механических напряжений, которые могут изменять форму и размеры элемента.

Кварцевые резонаторы изготавливают из природного и искусственного монокристаллического кварца. Из заготовки вырезают пластины, грани которых определенным образом ориентированы относительно кристаллографических осей монокристалла. В рабочем режиме на обкладках пластины имеется переменное напряжение и имеют место механические колебания пластины. Используются колебания сжатия-растяжения, изгиба, кручения и другие.

При анализе схемы с кварцевым резонатором (рис. 2.69, а) его удобно заменять эквивалентной схемой, представленной на рис 2.69, б.

Необходимо отметить, что именно эта эквивалентная схема кварцевого резонатора используется в пакете программ PSpice для моделирования электронных схем. В эквивалентной схеме могут иметь место и параллельный, и последовательный резонанс. На практике используют оба вида резонанса.

На частоте последовательного резонанса   wк =1/(LкCк)1/2 резонатор имеет минимальное сопротивление Rк .Частота параллельного резонанса

В диапазоне частот между wк и w0 резонатор ведет себя как некоторая индуктивность.

Кварцевые резонаторы характеризуются высокой стабильностью и добротностью (QK= 104 - 105). Использование кварцевых резонаторов позволяет снизить относительное изменение частоты генераторов до очень малых значений (10-6 - 10-9).

Приведем для примера упрощенную схему кварцевого генератора на основе операционного усилителя при использовании последовательного резонанса (рис. 2.70). На частоте последовательного резонанса в схеме имеет место сильная положительная обратная связь, что и поддерживает автоколебания.

Релаксационный генератор

Принцип работы релаксационного генератора основан на поведении физической системы, возвращающейся к равновесию после того, как оно нарушится. То есть, динамическая система в виде генератора, непрерывно рассеивает свою внутреннюю энергию. Обычно система возвращается к своему естественному равновесию, однако, каждый раз, когда она достигает некоторого порога, находящегося достаточно близко к равновесному состоянию, механизм работы сообщает ей дополнительную энергию. Таким образом, поведение генератора характеризуется длительными периодами рассеивания энергии, со следующими за ними короткими импульсами. Период колебаний зависит от времени, который необходим системе, что бы успокоится после нахождения в возмущённом состоянии до порога, при котором произойдёт следующее возмущение.

Реализация

Многие электронные релаксационные генераторы запасают энергию в конденсаторе, а затем периодически рассеивают эту энергию, в результате чего возникают колебания. Например, конденсатор может заряжаться до тех пор, пока напряжение на нём не достигнет некоторого порогового напряжения, достаточно близкого к напряжению питания. В этот момент конденсатор может быть быстро разряжен (например, короткозамкнут). Кроме того, каждый раз, когда конденсатор достигает порога, напряжение заряжающего источника может быть переключено из положительного в отрицательное, или наоборот. Во всех таких ёмкостных релаксационных генераторах период колебаний зависит от скорости разряда конденсатора. Реализации этих двух типов релаксационных генераторов будет рассмотрена далее, но релаксационные генераторы не обязательно могут быть электронными. Любой генератор, колебания которого приводятся в действие системой, которая почти всегда рассеивает энергию можно назвать релаксационным генератором.

Релаксационный генератор Пирсона-Ансона

Этот генератор может быть реализован с ёмкостной или резистивно-ёмкостной интегрирующей цепью, запитанной от источника постоянного тока или напряжения, и пороговым устройством с гистерезисом (неоновая лампа, тиратрон, динистор или однопереходный транзистор), подключённых параллельно с конденсатором. Конденсатор заряжается от источника напряжения, что вызывает рост напряжения на нём. Пороговое устройство не проводит ток до тех пор, пока напряжение на конденсаторе не достигает порога переключения. Как только порог переключения достигнут, проводимость порогового устройства возрастает лавинообразно из-за присущей положительной обратной связи, в результате чего быстро разряжается конденсатор. Когда напряжение на конденсаторе падает до некоторого нижнего порога, устройство прекращает проводить ток и конденсатор начинает заряжаться вновь, и далее цикл повторяется до бесконечности.

Рис.1. Типичная схема релаксационного генератора Пирсона-Ансона

Если пороговым элементом является неоновая лампа, то схема также даёт вспышки света с каждым разрядом конденсатора. Пример с неоновой лампой изображён на рисунке 1 в классической схеме, описывающей эффект Пирсона-Ансона. Продолжительность времени разрядки может быть увеличена путём подключения дополнительного резистора последовательно с пороговым элементом. Два резистора образуют делитель напряжения, так что дополнительный резистор должен иметь достаточно низкое сопротивление, чтобы неоновая лампа могла достичь нижнего порога переключения.

Когда в качестве триггера используется неоновая лампа или тиратрон, то часто последовательно с ними в схему добавляют второй резистор номиналом от десятков до сотен Ом для ограничения тока разряда конденсатора. Это предотвращает распыление покрытия электродов неоновых ламп и предохраняет тиратроны от повреждений в результате прохождения большого тока через электроды.


 

А также другие работы, которые могут Вас заинтересовать

10893. Планирование ресурсного потенциала предприятия 118 KB
  Под потенциалом предприятия принято понимать совокупность показателей или факторов, характеризующих его силу, источники, возможности, средства, запасы, способности, ресурсы и многие другие производственные резервы
10894. Процес обробки матеріалів різанням 29 KB
  Тема: Процес обробки матеріалів різанням. Мета: 1 ознайомити учнів з основними способами різання деревини елементами і назвами інструментів. Забезпечити засвоєння правил ТБ; 2 виховувати в учнів уважність відповідальне ставлення до обладнання майстерні бережливі...
10895. Прийоми розмічання за шаблонами та інструментами 36.5 KB
  Тема: Прийоми розмічання за шаблонами та інструментами. Мета: 1 вдосконалювати в учнів знання про процес розмічання дати основні поняття про розмічальний інструмент навчити правильно використовувати цей інструмент; 2 виховувати естетичний смак культуру праці; ...
10896. Розмічання: за шаблоном, копіюванням. Підготовка заготовки до роботи 40.5 KB
  Тема уроку: Розмічання: за шаблоном копіюванням. Підготовка заготовки до роботи. Мета: навчальна: сформувати уявлення про призначення та будову вимірювальних інструментів. Прийоми розмічання за шаблоном. Відомості про припуски на обробку. Виховна: виховувати стара...
10897. Сутність поняття естетика. Основні естетичні категорії 110.5 KB
  Історія виникнення поняття естетика у давньогрецькій культурі та країнах давнього сходу. Виділення естетики у самостійну науку. Естетична діяльність та її форми. Структура естетичної свідомості. Основні естетичні категорії. Мистецтво як складова частина предмета естетики.
10898. Методи проектування (фантазування, елементи біоніки). Вибір обєкту проектування на основі зібраної інформації 123.5 KB
  Тема уроку: Методи проектування фантазування елементи біоніки. Вибір об’єкту проектування на основі зібраної інформації. Складання ескізу майбутнього виробу. Мета уроку. Засвоєння знань про етапи проектування ескіз технічний опис макет креслення шаблони; форм
10899. Технологія зєднання деталей з тонколистового металу 26.5 KB
  Тема 8: Технологія з’єднання деталей з тонколистового металу. Мета: Навчальна: сформувати знання вміння та навички з’єднання виробів з тонколистового металу. Виховна: виховувати в учнів культуру праці та бережливе ставлення до інструментів. Розвиваюча: р...
10900. Організація робочого місця під час креслення, основні лінії креслення 42.5 KB
  Тема 11: Організація робочого місця під час креслення основні лінії креслення. Мета: Навчальна: сформувати знання вміння та навички креслення деталей. Виховна: виховувати в учнів культуру праці та бережливе ставлення до інструментів охайне виконання роботи. ...
10901. Розмічання: за шаблоном, копіюванням. Підготовка заготовок до роботи. Припуск. Технологія роботи лобзиком та правила безпеки 52 KB
  Тема: Розмічання: за шаблоном копіюванням. Підготовка заготовок до роботи. Припуск. Технологія роботи лобзиком та правила безпеки. Мета: освітня: ознайомлення учнів зі способами виконання розмічання на фанері; формування в учнів понять шаблон та припуск; формуванн