89395

Классификация, параметры, устройство и характеристики диодов

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Типы диодов по назначению Выпрямительные диоды предназначены для преобразования переменного тока в постоянный. Импульсные диоды имеют малую длительность переходных процессов предназначены для применения в импульсных режимах работы. Детекторные диоды предназначены для детектирования сигнала Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты. Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Русский

2015-05-12

156.52 KB

2 чел.

Классификация, параметры, устройство и характеристики диодов.

Типы диодов по назначению

  1.  Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.
  2.  Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.
  3.  Детекторные диоды предназначены для детектирования сигнала
  4.  Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.
  5.  Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.
  6.  Параметрические
  7.  Ограничительные диоды предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.
  8.  Умножительные
  9.  Настроечные
  10.  Генераторные

Типы диодов по частотному диапазону

  1.  Низкочастотные
  2.  Высокочастотные
  3.  СВЧ

Типы диодов по размеру перехода

  1.  Плоскостные
  2.  Точечные

Типы диодов по конструкции

  1.  Диоды Шоттки
  2.  СВЧ-диоды
  3.  Стабилитроны
  4.  Стабисторы
  5.  Варикапы
  6.  Светодиоды
  7.  Фотодиоды
  8.  Pin диод
  9.  Лавинный диод
  10.  Лавинно-пролётный диод
  11.  Диод Ганна
  12.  Туннельные диоды
  13.  Обращённые диоды

Полупроводниковым диодом называется электропреобразовательный полупроводниковый прибор с одним выпрямляющим электрическим переходом, имеющий 2 вывода.

Буквами р и п обозначены слои полупроводника с проводимостями соответственно p-типа и n-типа.

Обычно концентрации основных носителей заряда (дырок в слое р и электронов в слое п) сильно различаются. Слой полупроводника, имеющий большую концентрацию, называют эмиттером, а имеющий меньшую концентрацию, — базой.

В контактирующих слоях полупроводника имеет место диффузия дырок из слоя р в слой п, причиной которой является то, что их концентрация в слое р значительно больше их концентрации в слое п (существует градиент концентрации дырок). Аналогичная причина обеспечивает диффузию электронов из слоя п в слой р. Диффузия дырок из слоя р в слой п, во-первых, уменьшает их концентрацию в приграничной области слоя р и, во-вторых, уменьшает концентрацию свободных электронов в приграничной области слоя п вследствие рекомбинации. Подобные результаты имеет и диффузия электронов из слоя п в слой р.

В итоге в приграничных областях слоя р и слоя п возникает так называемый обедненный слой, в котором мала концентрация подвижных носителей заряда (электронов и дырок). Обедненный слой имеет большое удельное сопротивление.

Прямое и обратное включение р-п-перехода. Идеализированное математическое описание характеристики перехода. Подключим к p-n-переходу внешний источник напряжения так, как это показано на рис. 1.9. Это так называемое прямое включение р-п-перехода.

Подключим к p-n-переходу источник напряжения так, как это показано на рис. 1.11. Это так называемое обратное включение р-n-перехода.

Вольт-амперная характеристика (ВАХ) полупроводникового диода на постоянном токе (статическая характеристика). Вольт-амперная характеристика — это зависимость тока i, протекающего через диод, от напряжения и, приложенного к диоду (рис. 1.25). Вольт-амперной характеристикой называют и график этой зависимости.

Обратимся к прямой ветви вольт-амперной характеристики диода (и > 0, i > 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют :

  1.  сопротивления слоев полупроводника (особенно базы);
  2.  сопротивления контактов металл-полупроводник.

Обратимся к обратной ветви (и < 0, i < 0). Основные причины того, что реально обратный ток обычно на несколько порядков больше тока is, следующие:

  1.  термогенерация носителей непосредственно в обла
    сти р-
    n-перехода;
  2.  поверхностные утечки.

При комнатной температуре для кремниевых приборов ток термогенерации обычно существенно превышает тепловой ток is.

Для ориентировочных расчетов можно считать, что с повышением температуры ток is удваивается примерно на каждые 5°С, а ток термогенерации удваивается примерно на каждые 10°С. При температуре около 100°С ток is сравнивается с током термогенерации.

При увеличении модуля обратного напряжения ток утечки вначале изменяется линейно, а затем более быстро. Ток утечки характеризуется так называемой «ползучестью» — изменением в течение времени от нескольких секунд до нескольких часов.

При практических ориентировочных расчетах иногда принимают, что общий обратный ток кремниевого диода увеличивается в 2 раза или в 2,5 раза на каждые 10°С.

Для примера изобразим характеристики выпрямительного кремниевого диода Д229А при различных температурах (максимальный средний прямой ток — 400 мА, максимальное импульсное обратное напряжение — 200 В). Прямые ветви характеристик представлены на рис. 1.26, а обратные (до режима пробоя) — на рис. 1.27.

Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные    перенапряжения не выводят лавинный диод из строя. Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.

Зависимость барьерной емкости диода от напряжения. Приведем график зависимости общей емкости Сд кремниевого диода 2Д212А от обратного напряжения (основной вклад в общую емкость вносит барьерная емкость) (рис. 1.30). Для этого диода максимальный постоянный (средний) прямой ток — 1 А, максимальное постоянное (импульсное) обратное напряжение — 200 В.

Параметры диодов. Для того, чтобы количественно оха-рактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некото-рые параметры характеризуют диоды самых различных подклассов. Другие же характеризуют специфические свойства диодов только конкретных подклассов.

Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:

Iпр.макс. - максимально допустимый постоянный прямой ток;

Unp — постоянное прямое напряжение, соответствую-щее заданному току;

Uобр. макс — максимально допустимое обратное напряже-ние диода (положительная величина);

Iобр. макс — максимально допустимый постоянный обрат-ный ток диода (положительная величина; если реальный ток больше, чем Iобр. макс, то диод считается непригодным к использованию);

Rдиф - дифференциальное сопротивление диода (при заданном режиме работы).

В настоящее время существуют диоды, предназначен-ные для работы в очень широком диапазоне токов и на-пряжений. Для наиболее мощных диодов Iпр.макс. составля-ет килоамперы, a U обр.макс — киловольты.


 

А также другие работы, которые могут Вас заинтересовать

36697. Использование команд GRANT и REVOKE для задания привилегий пользователей 49 KB
  Откройте их с помощью команд [ltF3] и [ltF4] и зайдите в систему под именем любого пользователя например user. Работу в СУБД MySQL от имени пользователей root user3 и user4 необходимо вести параллельно подключившись с разных терминалов открытых в начале выполнения лабораторной работы. В лабораторной работе создаваемые пользователи обозначаются user3 и user4. То есть вам необходимо подставить вместо user3 и user4 имена ivnov3 и ivnov4.
36698. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА - ДЕЗОРМА 73 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Для определения отношения Сp Cv в случае воздуха в данной лабораторной работе применен метод предложенный Клеманом и Дезормом в котором использовано охлаждение газа при его адиабатическом расширении. Быстрое сжатие и быстрое расширение газа приблизительно можно рассматривать как адиабатический процесс. Отсюда видно что при адиабатическом сжатии температура газа повышается за счет работы внешних сил а при адиабатическом...
36699. Определение параметров импульсных сигналов, используемых для электростимуляции 495 KB
  Связь амплитуды формы импульса частоты следования импульсов длительности импульсного сигнала с раздражающим действием импульсного тока. Какова будет сила тока в начале разрядки конденсатора Через 6 мс напряжение на конденсаторе упадет до 250 В. Цель работы: Используя осциллограф С819 источник питания постоянного тока Б545 дифференцирующие и интегрирующие цепи.
36700. Изучение действия СВЧ поля на вещество 551 KB
  Переменные токи наведенные электрическим полем создают в диполе стоячую волну с пучностью тока в его середине. Они препятствуют ответвлению в гальванометр высокочастотного тока свободно пропуская выпрямленный.Исследование нагревания токами СВЧ электролита и диэлектрика.Делают вывод о влиянии СВЧ поля на вещество Воздействие переменными токами Первичное действие переменного тока и электромагнитного поля на биологические объекты в основном заключается в периодическом смещении ионов растворов электролитов и изменении поляризации...
36701. Градуирование электростатического вольтметра с помощью электрометра Томсона 396 KB
  Градуирование электростатического вольтметра с помощью электрометра Томсона. Цель работы: Градуирование шкалы электростатического вольтметра с помощью абсолютного электрометра Томсона т. Основные теоретические положения к данной работе основополагающие утверждения: формулы...
36702. Определение омического сопротивления при помощи моста Уитстона 306.5 KB
  Определение омического сопротивления при помощи моста Уитстона. Цель работы: Экспериментальное определение сопротивления проводников и проверка закона Ома с помощью моста постоянного тока. Однако существует одно определенное...
36703. Определение собственной люминесценции белка 1.1 MB
  Характеристики люминесценции спектр длительность квантовый выход. Задачи Исследование спектров люминесценции Спектром люминесценции называется кривая зависимости интенсивности люминесценции от длины волны или частоты: I = f  Интенсивность люминесценции выражается обычно в величинах пропорциональных энергии или числу квантов. Качественный и количественный анализ веществ в растворе и в живой клетке может производиться по спектрам люминесценции аналогично тому как это было описано выше для спектров поглощения.
36704. ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ 290 KB
  ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №22 ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ Цель работы: Определение опытным и расчетным путем индукции магнитного поля на оси соленоида с помощью законов движения электрона в электрическом и магнитном полях. С соленоид служащий для создания магнитного поля; А амперметр для...
36705. Изучение затухающих электромагнитных колебаний в колебательном контуре с помощью осциллографа 550 KB
  Изучение с помощью электронного осциллографа электромагнитных колебаний, возникающих в колебательном контуре, содержащем индуктивность, емкость и активное сопротивление; изучение условий возникновения затухающих колебаний в контуре; расчет основных физических величин, характеризующих эти колебания.