89405

Примеры применения полевых транзисторов.

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Ячейка памяти на основе полевого транзистора с изолированным затвором флэшпамять. Рассмотрим структуру и принцип действия ячейки так называемой флэшпамяти. Устройства флэшпамяти являются современными быстродействующими программируемыми постоянными запоминающими устройствами ППЗУ с электрической записью и электрическим стиранием информации ЭСППЗУ; в аббревиатуре нет букв соответствующих словам электрическая запись так как такая запись подразумевается. Ячейки памяти выдерживают не менее 100 000 циклов записи стирания.

Русский

2015-05-12

85.53 KB

1 чел.

Примеры применения полевых транзисторов.

Рассмотрим использование идей, реализованных в полевых транзисторах, в более сложных электронных устройствах.

Ячейка памяти на основе полевого транзистора с изолированным затвором (флэш-память). Рассмотрим структуру и принцип действия ячейки так называемой флэш-памяти.

Устройства флэш-памяти являются современными быстродействующими программируемыми постоянными запоминающими устройствами (ППЗУ) с электрической записью и электрическим стиранием информации (ЭСП-ПЗУ; в аббревиатуре нет букв, соответствующих словам «электрическая запись», так как такая запись подразумевается).

Эти устройства являются энергонезависимыми, так как информация не стирается при отключении питания. Ячейки памяти выдерживают не менее 100 000 циклов записи/стирания.

Изобразим упрощенную структуру ячейки флэш-памяти (рис. 1.107).

Слои полупроводника, обозначенные через n+, имеют повышенную концентрацию атомов-доноров. Изоляция затворов для упрощения рисунка не показана. Структура ячейки в некотором отношении подобна структуре МДП-транзистора с индуцированным каналом n-типа.

Один из затворов называют плавающим, так как он гальванически не связан с электродами прибора и его потенциал изменяется в зависимости от заряда на нем («плавающий» потенциал).

При записи информации в ячейку памяти электроны из истока туннелируют через тонкий слой изолирующего окисла кремния (толщиной около 1 • 10-8 м) и переходят на плавающий затвор. Накопленный отрицательный заряд на плавающем затворе увеличивает пороговое напряжение Uиз.порог. Поэтому в будущем при обращении к транзистору такой ячейки он будет восприниматься как выключенный (ток стока равен нулю). При стирании информации электроны уходят с плавающего затвора (также в результате туннелирования) в область истока. Транзистор без заряда на плавающем затворе воспринимается при считывании информации как включенный.

Длительность цикла считывания (чтения) информации составляет не более 85 нс. Состояние ячейки памяти может сохраняться более 10 лет.

Полупроводниковые приборы с зарядовой связью (ПЗС). Прибор с зарядовой связью имеет большое число расположенных на малом расстоянии затворов и соответствующих им структур металл — диэлектрик — полупроводник (МДП). Изобразим упрощенную структуру прибора с зарядовой связью (рис. 1.108).

При отрицательном напряжении на некотором затворе под ним скапливаются дырки, совокупность которых называют пакетом. Пакеты образуются из дырок, инжектированных истоком или возникающих в результате генерации пар электрон-дырка при поглощении оптического излучения. При соответствующем изменении напряжений на затворах пакеты перемещаются в направлении от истока к стоку.

Приборы с зарядовой связью используются:

  1.  в запоминающих устройствах ЭВМ;
  2.  в устройствах преобразования световых (оптических) сигналов в электрические.

Классификация полевых транзисторов такая же, как и биполярных транзисторов, т. е. используется буквенно-цифровой код, в котором второй элемент — буква П, определяющая подкласс [3].

Примеры обозначения приборов:

КП310А — кремниевый транзистор малой мощности, с граничной частотой более 30 МГц, номер разработки 10,группа А;

2П701Б — кремниевый транзистор большой мощности, с граничной частотой не более 30 МГц, номер разработки 1, группа Б.


 

А также другие работы, которые могут Вас заинтересовать

50340. Использование библиотеки элементов графического интерфейса Qt 111.5 KB
  План простейшее графическое приложение на Qt работа с компоновщиками создание приложения ColorViewer использование QFileDilog создание простейшего обозревателя текста Инструкция по выполнению лабораторной работы Простейшее GUIприложение на Qt Рассмотрим следующий фрагмент кода представляющий простейшее GUIприложение созданное с использованием элементов Qt. QWidget базовый класс для всех элементов графического интерфейса виджетов в Qt начиная с кнопок и кончая сложными диалогами. Попробуйте добавить в корневой...
50341. Постройка графа состояний P-схемы 166 KB
  Для СМО из задания 1 построить имитационную модель и исследовать ее (разработать алгоритм и написать имитирующую программу, предусматривающую сбор и статистическую обработку данных для получения оценок заданных характеристик СМО). Распределение интервалов времени между заявками во входном потоке и интервалов времени обслуживания – геометрическое с соответствующим параметром (ρ, π1, π2).
50342. Построение аналитической и имитационной моделей системы массового обслуживания 80 KB
  Если в свободную систему поступает заявка, то ее обслуживают совместно все каналы. Если во время обслуживания заявки поступает еще одна, то часть каналов переключается на ее обслуживание и т.д., пока все каналы не окажутся занятыми. Интенсивность совместного обслуживания заявки n каналами n . Каналы распределяются равномерно между заявками.
50343. Построение аналитической и имитационной моделей системы массового обслуживания 158.5 KB
  Значения A, Q зависят от числа пришедших заявок (величины модельного времени), а также от R0, при генерации случайных чисел, распределенных по экспоненциальному закону.
50344. Снятие кривой намагничивания ферромагнитного образца 68 KB
  Расчетные формулы: Индукция намагничивающего поля: где N1 число витков намагничивающей обмотки тороида; D длина осевой линии тороида. Магнитная индукция в образце: или B=cn где постоянная где R2 сопротивление вторичной цепи; kбаллистическая постоянная; S2 площадь поперечного сечения образца; nотброс.Результаты наблюдений: Снятие основной кривой намагничивания Намагни чивающий ток I1 мА Индукция B0 намагничивающего поля Тл Отброс 1 вправо дел. Индукция В...
50346. Изучение магнитного поля соленоида баллистическим методом 40.5 KB
  Изучение магнитного поля соленоида баллистическим методом. Результаты измерения индукции поля в центре соленоида в зависимости от силы тока в его обмотках: № П П n1 мм n2 мм n=1 2n1n2 мм Вэ Тл 1.Результаты измерения индукции поля соленоида в зависимости от расстояния до его центра при I= мА N см n1 мм n2 мм n=1 2n1n2мм Вэ Тл 7.Расчеты поля в центре Вт при токе I= 7.
50347. Изучение эффекта Холла 74 KB
  Кирова кафедра физики Изучение эффекта Холла. Расчетные формулы: где где N=40 1 число витков катушки; Ом – общее сопротивление цепи; Кл дел– баллистическая постоянная гальванометра; м2 – площадь витков катушки; n’ – отброс; RH – постоянная Холла; UН – ЭДС Холла; n – концентрация свободных частиц; толщина датчика Холла....