89408

Фотоэлемент. Классификация, принцип работы, параметры, характеристики фотоэлементов

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость.

Русский

2015-05-12

140.77 KB

60 чел.

Классификация, принцип работы, параметры, характеристики фотоэлементов:

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию.

Физический принцип работы фотоэлемента:

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Дадим схематическое изображение структуры фоторезистора (рис. 1.124,а) и его условное графическое обозначение (рис. 1.124,6).          

Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости).

Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика.

Изобразим такую характеристику для фоторезистора типа ФСК-Г7, который работает в видимой части спектра

Часто используют следующие параметры фоторезисторов:

  1.  номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);
  2.  интегральную чувствительность (чувствительность называют интегральной, так как ее определяют при освещении фоторезистора светом сложного спектрального состава).

Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением

где iф — так называемый фототок (это разность между током при освещении и током при отсутствии освещения);

Ф — световой поток.

Для фоторезистора ФСК-Г7 S = 0,7 А/лм.

Рассмотрим устройства, основные физические процессы, характеристики и параметры фотодиода.

Устройство и основные физические процессы. Изобразим упрощенную структуру фотодиода (рис. 1.126, а) и его условное графическое обозначение (рис. 1.126, б).

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Электрическое поле p-n-перехода разделяет электроны и дырки. Неосновные носители электричества, для которых поле является ускоряющим, выводятся этим полем за переход. Основные носители задерживаются полем в своей области проводимости.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения иак между анодом и катодом при разомкнутой цепи. Причем в соответствии со сделанным замечанием о разделении электронов и дырок иак > 0 (дырки переходят к аноду, а электроны — к катоду).

Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещен-ностям (освещенность измеряется в люксах, лк).

Обратимся к вольт-амперным характеристикам (ВАХ) фотодиода (рис. 1.127). Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет

ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n-перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n-перехода носители электрода движутся к электродам (дырки — к электроду слоя р, электроны — к электроду слоя п). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

Режим фотогенератора имеет место при и > 0 и i< 0 (четвертый квадрант). При этом диод отдает энергию во внешнюю цепь (иi < 0). В этом режиме работают солнечные элементы. В настоящее время коэффициент полезного действия солнечных элементов достигает 20%. Пока энергия, вырабатываемая солнечными элементами, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Но ожидается, что стоимость энергии, получаемой с помощью солнечных батарей, будет снижаться.

Режим фотопреобразователя соответствует соотношениям и < 0 и i < 0 (третий квадрант). В этом режиме фотодиод потребляет энергию (и • i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 1.128). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображают в первом квадранте (рис. 1.129).

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107—1010 Гц. Фотодиод часто используется в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки). Изобразим соответствующие току светодиода 20 мА характеристики фотодиода, входящего в опто-пару АОД112А-1 (рис. 1.130, а).При этом ток i и напряжение и фотодиода соответствуют обычным для диодов условно-положительным направлениям (рис. 1.130,6).

Фототранзистор и фототиристор: Выходные характеристики фототранзистора подобны выходным характеристикам обычного биполярного транзистора, но теперь положение характеристик определяется не током базы, а уровнем освещенности (или величиной светового потока).Свойства фототиристора подобны свойствам обычного тиристора, однако с той лишь особенностью, что включение тиристора осуществляется не с помощью импульса тока управления, а с помощью светового импульса.

Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния (химический символ Si). Кремний это полупроводник. Он широко распространен на земле в виде песка, который является диоксидом кремния (SiO2), также известного под именем "кварцит". Другая область применения кремния - электроника, где кремний используется для производства полупроводниковых приборов и микросхем.

Структура солнечного элемента: Прежде всего , в СЭ имеется задний контакт и 2 слоя кремния разной проводимости. Сверху имеется сетка из металлических контактов и антибликовое просветляющее покрытие, которое дает СЭ характерный синий оттенок.

Типы солнечных элементов :СЭ может быть следующих типов: монокристаллический, поликристаллический и аморфный (тонкопленочный). Различие между этими формами в том, как организованы атомы кремния в кристалле. Различные СЭ имеют разный КПД преобразования энергии света. Моно- и поликристаллические элементы имеют почти одинаковый КПД, который выше, чем у солнечных элементов, изготовленных из аморфного кремния.

В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные фотоэлектрические элементы из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются. Технологии их производства постоянно развиваются, за последнее десятилетие КПД тонкопленочных элементов вырос примерно в 2 раза.

Последние технологии используют гибридные методы. Так появились элементы, которые имеют как кристаллический переход, так и тонкий полупрозрачный аморфный переход, расположенный над кристаллическим. Так как кристаллы и аморфный кремний наиболее эффективно преобразуют только часть спектра света, и эти спектры немного отличаются, применение таких гибридных элементов позволяет повысить общий КПД солнечного элемента.


 

А также другие работы, которые могут Вас заинтересовать

33915. Общее понятие о вариации, показатели величины вариации и способы их расчета 13.27 KB
  Общее понятие о вариации показатели величины вариации и способы их расчета. Показатели вариации показатели стабильности позволяют сделать вывод об однородности совокупности о надежности типичности средней. Для измерения величины вариации используется абсолютный и относительный показатель вариации. Размах вариации R=XmxXmin.
33916. Абсолютные показатели вариации 20.12 KB
  Чтобы дать представление о величине варьирующего признака недостаточно исчислить средний показатель. Кроме средней необходим показатель характеризующий вариацию признака. Вариация это изменение значения признака у отдельных единиц совокупности.
33917. Относительные показатели вариации 15.59 KB
  Относительные показатели вариации Для сравнения вариации в разных совокупностях рассчитываются относительные показатели вариации. К ним относятся коэффициент вариации коэффициент осцилляции и линейный коэффициент вариации относительное линейное отклонение. Коэффициент вариации это отношение среднеквадратического отклонения к среднеарифметическому рассчитывается в процентах: . Коэффициент вариации позволяет судить об однородности совокупности: 17 абсолютно однородная; 1733 достаточно однородная; 3540 недостаточно...
33918. Мода. Определение моды в дискретных вариационных рядах 15.34 KB
  Определение моды в вариационных рядах с равными интервалами.6 где x0 нижняя граница модального интервала модальным называется интервал имеющий наибольшую частоту; i величина модального интервала; fMo частота модального интервала; fMo1 частота интервала предшествующего модальному; fMo1 частота интервала следующего за модальным.
33919. Понятие медианы, квартилей, децилей 11.29 KB
  Понятие медианы квартилей децилей Медианазначение признака которое делит стат.совти имеет значение признака не МЕНЬШЕ медианы а другая половина значение признака не больше медианы. Значение изучаемого признака всех ед.совти не четное то значение признака находящееся в середине ранжированного ряда будет являться медианой а если число ед.
33920. Определение структурных средних в дискретных вариационных рядах 14.62 KB
  Мода это наиболее часто встречающийся вариант ряда. Модой для дискретного ряда является варианта обладающая наибольшей частотой. Медиана это значение признака которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.
33921. Определение структурных средних в интервальном вариационном ряду 41.92 KB
  При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал по максимальной частоте а затем значение модальной величины признака по формуле: где: значение моды нижняя граница модального интервала величина интервала заменить на iМе частота модального интервала частота интервала предшествующего модальному частота интервала следующего за модальным Медиана это значение признака которое лежит в основе ранжированного ряда и делит этот ряд на две равные по...
33922. Закономерные изменения частот за счет изменения варьирующего признака в вариационных рядах 12.67 KB
  Главной задачей анализа вариационных рядов является выявление закономерностей распределения и характера распределения. Тип закономерности распределения это отражение в вариационных рядах общих условий определяющих распределение в однородной совокупности. Следовательно должна быть построена кривая распределения.
33923. Виды дисперсий. Правило сложения дисперсий 23.06 KB
  Правило сложения дисперсий Вариация признака происходит в резте влияния на него различных факторов. Признакам на вариации под влиянием осн. Отклонение индивидуальных значений результативного признака от ср.значения результативного признака для всей совокупности можно представить как сумму отклонений где i текущий номер признака общей совти; j текущий номер группы в интером ряду распределения; среднее значение результативного признака в jгруппе.