89408

Фотоэлемент. Классификация, принцип работы, параметры, характеристики фотоэлементов

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость.

Русский

2015-05-12

140.77 KB

64 чел.

Классификация, принцип работы, параметры, характеристики фотоэлементов:

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию.

Физический принцип работы фотоэлемента:

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Дадим схематическое изображение структуры фоторезистора (рис. 1.124,а) и его условное графическое обозначение (рис. 1.124,6).          

Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости).

Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика.

Изобразим такую характеристику для фоторезистора типа ФСК-Г7, который работает в видимой части спектра

Часто используют следующие параметры фоторезисторов:

  1.  номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);
  2.  интегральную чувствительность (чувствительность называют интегральной, так как ее определяют при освещении фоторезистора светом сложного спектрального состава).

Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением

где iф — так называемый фототок (это разность между током при освещении и током при отсутствии освещения);

Ф — световой поток.

Для фоторезистора ФСК-Г7 S = 0,7 А/лм.

Рассмотрим устройства, основные физические процессы, характеристики и параметры фотодиода.

Устройство и основные физические процессы. Изобразим упрощенную структуру фотодиода (рис. 1.126, а) и его условное графическое обозначение (рис. 1.126, б).

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Электрическое поле p-n-перехода разделяет электроны и дырки. Неосновные носители электричества, для которых поле является ускоряющим, выводятся этим полем за переход. Основные носители задерживаются полем в своей области проводимости.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения иак между анодом и катодом при разомкнутой цепи. Причем в соответствии со сделанным замечанием о разделении электронов и дырок иак > 0 (дырки переходят к аноду, а электроны — к катоду).

Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещен-ностям (освещенность измеряется в люксах, лк).

Обратимся к вольт-амперным характеристикам (ВАХ) фотодиода (рис. 1.127). Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет

ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n-перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n-перехода носители электрода движутся к электродам (дырки — к электроду слоя р, электроны — к электроду слоя п). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

Режим фотогенератора имеет место при и > 0 и i< 0 (четвертый квадрант). При этом диод отдает энергию во внешнюю цепь (иi < 0). В этом режиме работают солнечные элементы. В настоящее время коэффициент полезного действия солнечных элементов достигает 20%. Пока энергия, вырабатываемая солнечными элементами, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Но ожидается, что стоимость энергии, получаемой с помощью солнечных батарей, будет снижаться.

Режим фотопреобразователя соответствует соотношениям и < 0 и i < 0 (третий квадрант). В этом режиме фотодиод потребляет энергию (и • i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 1.128). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображают в первом квадранте (рис. 1.129).

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107—1010 Гц. Фотодиод часто используется в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки). Изобразим соответствующие току светодиода 20 мА характеристики фотодиода, входящего в опто-пару АОД112А-1 (рис. 1.130, а).При этом ток i и напряжение и фотодиода соответствуют обычным для диодов условно-положительным направлениям (рис. 1.130,6).

Фототранзистор и фототиристор: Выходные характеристики фототранзистора подобны выходным характеристикам обычного биполярного транзистора, но теперь положение характеристик определяется не током базы, а уровнем освещенности (или величиной светового потока).Свойства фототиристора подобны свойствам обычного тиристора, однако с той лишь особенностью, что включение тиристора осуществляется не с помощью импульса тока управления, а с помощью светового импульса.

Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния (химический символ Si). Кремний это полупроводник. Он широко распространен на земле в виде песка, который является диоксидом кремния (SiO2), также известного под именем "кварцит". Другая область применения кремния - электроника, где кремний используется для производства полупроводниковых приборов и микросхем.

Структура солнечного элемента: Прежде всего , в СЭ имеется задний контакт и 2 слоя кремния разной проводимости. Сверху имеется сетка из металлических контактов и антибликовое просветляющее покрытие, которое дает СЭ характерный синий оттенок.

Типы солнечных элементов :СЭ может быть следующих типов: монокристаллический, поликристаллический и аморфный (тонкопленочный). Различие между этими формами в том, как организованы атомы кремния в кристалле. Различные СЭ имеют разный КПД преобразования энергии света. Моно- и поликристаллические элементы имеют почти одинаковый КПД, который выше, чем у солнечных элементов, изготовленных из аморфного кремния.

В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные фотоэлектрические элементы из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются. Технологии их производства постоянно развиваются, за последнее десятилетие КПД тонкопленочных элементов вырос примерно в 2 раза.

Последние технологии используют гибридные методы. Так появились элементы, которые имеют как кристаллический переход, так и тонкий полупрозрачный аморфный переход, расположенный над кристаллическим. Так как кристаллы и аморфный кремний наиболее эффективно преобразуют только часть спектра света, и эти спектры немного отличаются, применение таких гибридных элементов позволяет повысить общий КПД солнечного элемента.


 

А также другие работы, которые могут Вас заинтересовать

34835. Понятие риска инвестиционного проекта 28.5 KB
  Инвестиционные риски классифицируются поособому. риск Автономный Портфельныйкорпоративный Деловой Финансовый Диверсифи Недиверсифицируемый цируемый систематический рыночный...
34836. Оценка автономного риска методами, не связанными с математической статистикой 32.5 KB
  Автономный риск обычно оценивают по степени размытости неопределенности чистых денежных потоков. Различают несколько методов оценки автономного риска. нестатистические методы оценки риска.
34837. Статистические методы оценки автономного риска 28.5 KB
  Наиболее распространенный способ оценки статистического риска это расчет коэффициента вариации NCF. vNCF = σNCF NCF100 σNCF = √∑nx=1 NCFx NCF2px NCF = ∑nx=1 px NCFx x = 1n количество исходов вариантов состояний экономики рынка; px вероятность наступления того или иного исхода. Чем больше значение vNCF тем риск проекта больше.
34838. Операционный и финансовый рычаги и риск инвестиционного проекта 43 KB
  Величина делового риска оценивается по величине операционного рычага или левериджа. Величина финансового риска зависит от финансового рычага левериджа. Сила воздействия операционного рычага вычисляется как отношение валовой маржи к прибыли после уплаты процентов но до уплаты налога на прибыль: ЭОР=ВМ П где ЭОР эффект операционного рычага; ВМ валовая маржа; П прибыль после уплаты процентов но до...
34839. Инвестиции. Капитальные вложения. Классификация инвестиций 28.5 KB
  Классификация инвестиций Инвестиции это денежные средства имущество и иные имущественные права ценные бумаги вкладываемые в объекты предпринимательской деятельности в иные объекты с целью получения прибыли или иного полезного результата. Капитальные вложения это частный случай инвестиций инвестиции в основные средства предприятия. Классификация инвестиций: Тактические и стратегические инвестиции.
34840. Управление инвестициями в Российской Федерации 38.5 KB
  Элементами механизма реализации инвестиций является: Российская венчурная компания венчурные управленческие компании венчурные фонды инновационные предприятия. капитал → венчурные управленческие компании 100 частный капитал → венчурные фонды 5 частный капитал 49 гос. ОАО РВК на конкурентной основе утверждает ВУК венчурные управленческие компании которые в свою очередь учреждают венчурные фонды. Венчурные фонды вкладывают деньги в инновационные предприятия т.
34841. Предварительная оценка коммерческой привлекательности инвестиционного проекта 40 KB
  ценность проекта проверяется в 2 этапа: 1 предварительная экспертиза 2 основная экспертиза проекта Цель предварительной экспертизы провести формальный и неформальный анализ окружения проекта выявить все угрозы и проблемы которые ожидают проект в будущем. Для этого формируются группы экспертов которые проводят тестирование проблем связанные с реализацией проекта. В результате тестирования машина рассчитывает рейтинг проекта она же вычерчивает профиль проекта.
34842. Основная оценка коммерческой привлекательности инвестиционного проекта 56.5 KB
  Финансовые показатели проекта рассчитываются по трем прогнозным формам: бух. Баланс составляется на первый год проекта помесячно второй год поквартально последующие года годовые балансы. Из всех финансовых показателей наиболее важными для проекта являются показатели ликвидности и платежеспособности и показатели рентабельности.
34843. Жизненный цикл инвестиционного проекта. Матрица ответственности проекта 36 KB
  Матрица ответственности проекта Жизненный цикл проекта это промежуток времени от момента начала финансирования проекта до момента утилизации основных средств проекта. Инвестиционный показывает продолжительность подготовительной и производственной стадии проекта. доходы 3 начало конец 1 годы затраты 2 1 прединвестиционная фаза 2 инвестиционная фаза 3 фаза эксплуатации проекта На первой фазе разрабатывается бизнесплан это относительно небольшие деньги.