89639

РЕАКЦИЯ РОДОПСИНА НА ДЕЙСТВИЕ СВЕТА

Доклад

Биология и генетика

Спектр поглощения родопсина имеет вид: Спектр поглощения родопсина Спектр поглощения родопсина хорошо приспособлен к восприятию света в достаточно широкой области солнечного излучения но лучше всего этот зрительный пигмент поглощает свет в зеленой части этого спектра 500 нм. Возможность поглощения фотонов родопсина близка к теоретически возможному значению. При поглощении фотона молекула родопсина претерпевает электрический переход при этом молекула родопсина оказывается в синглетном возбужденном состоянии.

Русский

2015-05-13

48.72 KB

1 чел.

РЕАКЦИЯ РОДОПСИНА НА ДЕЙСТВИЕ СВЕТА

Первичный механизм возбуждения П светом связан со сложными превращениями родопсина в фоторецепторной мембране. Родопсин – это высокомолекулярное соединение, состоящее из двух основных компонентов:

  1.  Альдегид витамина А (ретиналь).
  2.  Липопротеин под названием опсин (белок глаза).

Спектр поглощения родопсина имеет вид:

Спектр поглощения родопсина

Спектр поглощения родопсина хорошо приспособлен к восприятию света в достаточно широкой области солнечного излучения, но лучше всего этот зрительный пигмент поглощает свет в зеленой части этого спектра (500 нм). Красные и синие лучи он отражает, причем, в отраженном свете преобладает красный компонент, хотя присутствует и синий. Поэтому пигмент имеет пурпурный цвет, определивший и его название. Родопсин относится к наиболее интенсивно окрашиваемым соединениям из всех известных в настоящее время в органической химии. Возможность поглощения фотонов родопсина близка к теоретически возможному значению.

В темноте ретиналь пребывает в 11 цис-форме, для которой характерна некоторая скрученность молекулы. Скрученность объясняется тем, что в планарной форме между близко расположенными метильной группой у углерода (С13) и водородом у С10, возникает сильное отталкивание. Сила отталкивания не допускает плоского расположения -связи. Скрученность в молекуле 11 цис-ретиналя обеспечивает наибольшую энергию взаимодействия с опсином, вследствие чего их комплекс (ретиналя и опсина) весьма устойчив. Для его разрушения необходимо преобразовать 11 цис-ретиналь в другой изомер, в так называемый полностью транс-ретиналь. Такое преобразование из цис- в транс-ретиналь происходит под действием света. Этот процесс называется фотоизомеризацией.

При поглощении фотона (), молекула родопсина претерпевает электрический переход «», при этом, молекула родопсина оказывается в синглетном возбужденном состоянии. Необходимо отметить, что в органических молекулах -орбитали, которые свойственны основному энергетическому состоянию, являются связывающими, то есть, они стремятся к перекрытию и образованию второй связи. Напротив, -орбитали, характерные для возбужденного состояния молекулы, относятся к разрыхляющим орбиталям. Их перекрытие энергетически невыгодно. В силу чего, части молекулы, соединенные двойной связью с участием -орбитали, разворачиваются на 90 градусов, и двойная связь превращается в одинарную. В этой связи, в молекуле ретиналя, возбужденной светом, происходит поворот атомов вокруг двойной связи. Такое измененние пространственного расположения атомов, входящих в состав ретиналя, требует затрат энергии. Эти энергозатраты характеризуются преодолением потенциального барьера. Для разворота атома вокруг двойной связи в 11 цис-ретинале достаточно энергии одного фотона. Для фотоизомеризации достаточно и времени, в течение которого молекула родопсина пребывает в сигнетном возбужденном состоянии (с), поскольку цис-тран-изомеризация ретиналя происходит всего за 0,1-0,3 пс, квантовый выход фотоизомеризации 11 цис-ретиналя в родопсине достигает 0,7.

Фотоизомеризация – есть первая и единственная фотохимическая реакция в зрительном акте. Она протекает внутри отдельной молекулы родопсина и, в отличие от фотосинтеза, не сопровождается никакими химическими реакциями. Зрение отличается от фотосинтеза, который происходит в растениях, еще и тем, что между молекулами родопсина невозможен перенос энергии, так как, в фоторецепторной мембране молекулы родопсина удалены друг от друга на расстояние более 7 нм. Непосредственным следствием фотоизомеризации, приводящей к появлению у человека ощущения света, служат конформационные перестройки молекулы родопсина. Дело в том, что пространственно 11 цис-ретиналь точно соответствует конфигурации активного центра. При образовании транс-ретиналя, это соответствие (комплементарность) нарушается. В результате чего ретиналь отщепляется от опсина, и родопсин обесцвечивается, то есть, претерпевает фотолиз.

Вне действия света, распавшийся родопсин восстанавливается. В ходе восстановления, транс-ретиналь преобразуется в цис-форму. Такой переход обратной фотоизомеризации называется реизомеризацией. У позвоночных животных транс-ретиналь, отщепившись от опсина, поступает в пигментный эпителий сетчатки, где подвергается ферментативным превращениям. Из пигментного эпителия фоторецептором (П, К) доставляется 11 цис-ретиналь. Каждая палочка ежесекундно синтезирует молекул родопсина из поступающего в нее 11 цис-ретиналя, который соединяется с опсином. Суточный синтез этого зрительного пигмента в целом оценивается величиной примерно молекул.

Конформационная перестройка родопсина, называющаяся фотоизомеризацией ретиналя, довольно существенна. Естественно, что перестройку сопровождают значительные изменения физико-химических свойств фоторецепторной мембраны, в которую встроен родопсин. Одним из важных последствий этих изменений служит сдвиг мембранного потенциала фоторецепторной клетки.


 

А также другие работы, которые могут Вас заинтересовать

13327. Визначення коефіцієнта поверхневого натягу методом Ребіндера 223 KB
  Лабораторна робота №7 Визначення коефіцієнта поверхневого натягу методом Ребіндера. Мета роботи: аВизначення властивостей рідини: бВивчення методів та експериментальне визначення коефіцієнта поверхневого натягу. Прилади та матеріали: аспіратор установка
13328. Комп’ютерний вибір оптимальних однорідних термоелектричних матеріалів для термоелектрики 29.5 KB
  Звіт до лабораторної роботи № 1 Компютерний вибір оптимальних однорідних термоелектричних матеріалів для термоелектрики Мета роботи Використовуючи експериментальні дані кінетичних коефіцієнтів навчитись проводити раціональний вибір термоелектричного мат
13329. Моделювання матеріалу n – типу провідності на основі Bi - Sb в оптимальному магнітному полі для низькотемпературного охолодження 27 KB
  Звіт до лабораторної роботи № 2 Моделювання матеріалу n типу провідності на основі Bi Sb в оптимальному магнітному полі для низькотемпературного охолодження Мета роботи Використовуючи експериментальні залежності коефіцієнтів Зеебека α електропровідності σ ...
13330. Проектування термоелектричного матеріалу для віток термоелемента на основі мікроскопічної теорії явищ перенесення 38 KB
  Звіт до лабораторної роботи № 3 Проектування термоелектричного матеріалу для віток термоелемента на основі мікроскопічної теорії явищ перенесення Мета роботи На основі макроскопічної теорії явищ перенесення навчитись моделювати напівпровідниковий матеріа
13331. Оптимізація однорідних термоелектричних матеріалів на основі мікроскопічної теорії явищ переносу 79 KB
  Звіт до лабораторної роботи № 4 Оптимізація однорідних термоелектричних матеріалів на основі мікроскопічної теорії явищ переносу Мета роботи Набути навички визначення оптимальних властивостей матеріалу віток при яких досягається максимальне значення параме
13332. Теоретичне дослідження параметрів термоелектричних речовин при наявності виродження електронного газу 88 KB
  Звіт до лабораторної роботи № 5 Теоретичне дослідження параметрів термоелектричних речовин при наявності виродження електронного газу Мета роботи Розрахувати основні параметри термоелектричних матеріалів при наявності виродження електронною газу. Методика...
13333. Комп’ютерне моделювання дискретно - неоднорідного термоелектричного матеріалу для секційних термоелементів 26.5 KB
  Звіт до лабораторної роботи № 6 Компютерне моделювання дискретно неоднорідного термоелектричного матеріалу для секційних термоелементів Мета роботи Використовуючи експериментальні температурні залежності коефіцієнтів Зеебека α електропровідності σ те
13334. Проектування ФГМ для термопарних генераторних елементів 27.5 KB
  Звіт до лабораторної роботи № 7 Проектування ФГМ для термопарних генераторних елементів Мета роботи Навчитись проводити комп'ютерне проектування оптимально неоднорідних матеріалів для генераторних термопарних елементів в режимі максимальної енергетичної еф
13335. Використання директив резервування та ініціалізації пам’яті 35.25 KB
  Лабораторна робота №1. Тема:Використання директив резервування та ініціалізації памяті. Мета:Набути навиків опису простих типів даних;вивчити принцип розміщення даних програми в памяті компютера. Короткі теоретичні відомості: Порядок створення програми на...