89640

РЕЦЕПТОРНЫЕ ПОТЕНЦИАЛЫ

Доклад

Биология и генетика

Сдвиг мембранного потенциала фоторецепторной клетки (П или К), который принято называть рецепторным потенциалом, происходит на ее плазмолемме, тогда, как фотоизомеризация родопсина совершается преимущественно во внутриклеточных мембранах, то есть, в мембранных дисках наружных сегментов.

Русский

2015-05-13

52.3 KB

0 чел.

РЕЦЕПТОРНЫЕ ПОТЕНЦИАЛЫ

Сдвиг мембранного потенциала фоторецепторной клетки (П или К), который принято называть рецепторным потенциалом, происходит на ее плазмолемме, тогда, как фотоизомеризация родопсина совершается преимущественно во внутриклеточных мембранах, то есть, в мембранных дисках наружных сегментов.

Свойство фоторецепторных мембран изменяется одновременно с конформационной перестройкой в них опсина. После поглощения (кванта света), спустя 1,5-2 мс, наблюдается гиперполяризация плазмолеммы фоторецепторной клетки (П или К). Следовательно, в палочке (К) существует механизм передачи сигнала с фоторецепторных мембран дисков на плазмолемму П (К). В передаче участвует, так называемый, внутриклеточный посредник, природа которого до настоящего времени полностью не установлена, однако, считают, что в посредничестве участвуют циклический гуанозинмонофосфат (цГМФ) и ионы .

В следствие конформационной перестройки молекул родопсина, в фоторецепторной мембране изменяется содержание внутриклеточного посредника в цитозоле наружного сегмента П или К. Это приводит к закрытию 100-300 натриевых каналов в плазмолемме, которые в отсутствие светового раздражителя пребывали в открытом состоянии. Они обладают свойствами потенциалнезависимых ионных каналов и, будучи управляемые светом, получили название фотозависимых натриевых каналов. Когда закрываются 100-300 каналов, электропроводимость плазмолеммы наружного сегмента падает на 1-3%. Падение мембранной электропроводимости приводит в гиперполяризации фоторецепторной клетки. Гиперполяризационный сдвиг мембранного потенциала П (К), возникающий под действием света, называют рецепторным потенциалом (РП). Принято считать, что ПП фоторецепторной клетки генерируется в темноте на плазмолемме внутреннего сегмента. По своей природе ПП является калиевым потенциалом, подобно всякому мембранному потенциалу в условиях покоя. В темноте ПП палочки (колбочки) составляет примерно от –20 до –40 мВ.

В системе генерации энергетического потенциала П плазмолемма наружного сегмента выполняет роль шунта с переменной электропроводностью. Электропроводность регулируется (управляется) светом при помощи фотозависимых натриевых каналов. Когда все натриевые каналы плазматической мембраны наружного сегмента одной П оказываются заблокированными светом, удельное поверхностное сопротивление этой мембраны достигает величины . В темноте ионный ток, входящий через каналы в цитоплазму, довольно значителен, и составляет примерно 40 nА. А при освещении сетчатки он блокируется, при этом степень его ослабления зависит от интенсивности света. Чем слабее натриевый ток через плазматическую мембрану наружного сегмента, тем больше выражена гиперполяризация в фоторецепторной клетке. Изменение потенциала П (К) во времени имеет вид:

Рецепторные потенциалы одиночной колбочки, возникающие в ответ

на короткие (10 мс) вспышки света при трех разных интенсивностях света

– интенсивность света. Чем больше I, тем больше гиперполяризация .

При поглощении 1 фотона () гиперполяризация фоторецепторов разных представителей животного мира неодинакова. Так, в палочках сетчатки позвоночных животных гиперполяризация составляет десятки и сотни мкВ, тогда, как в фоторецепторных клетках членистоногих она достигает 10 мВ. Эти приведенные числа подтверждают положение об усилении сигнала в рецепторных аппаратах. Действительно, квант света, несущий энергию Дж, вызывает фотолиз только одной молекулы родопсина, что в свою очередь приводит к закрытию в плазмолемме фоторецепторной клетки позвоночных животных 100-300 натриевых каналов. Это приводит к образованию РП. Однако, энергия РП на 3 порядка превосходит энергию вызвавшего его фотона.

Амплитуда рецепторного потенциала возрастает при повышении интенсивности света, падающего на сетчатку, причем, в пределах 1000-кратного изменения интенсивности, эта зависимость имеет логарифмический характер:

- изменение амплитуды РП.

- коэффициент пропорциональности;

- интенсивность последующего;

- интенсивность предыдущего.

При ярком освещении амплитуда рецепторного потенциала может достигать 25 мВ. Величина РП зависит также и от длины волны света. П или К в ответ на зеленый свет (=500 нм), генерируют наибольший РП. Среди К выделено 3 типа:

  1.  дает максимальный ответ РП на синий цвет;
  2.  дает максимальный ответ РП на зеленый цвет;
  3.  дает максимальный ответ РП на желто-красный цвет.

Использование микроэлектронной техники для изучения реакции фоторецепторов на облучение светом, позволило обнаружить деполяризацию П и К, при этом деполяризация предшествует гиперполяризации. Амплитуда деполяризации очень мала и составляет примерно 0,1 мкВ. Учитывая временные соотношения де- и гиперполяризации, первую из них стали называть ранним, а вторую – поздним РП, и обозначили, соответственно, РРП и ПРП. Установлено, что РРП обусловлен преимущественно перемещениями электрических диполей в мембранах наружного сегмента. Эти перемещения диполей связаны с фотолизом молекул родопсина. Другими словами, РРП обусловлен током смещения в фоторецепторных мембранах, и РРП не служит промежуточным звеном передачи сигналов от них к синоптической зоне П или К, при действии света. Эта роль принадлежит гиперполяризации. В отличие от других рецепторных аппаратов, где таким звеном служит деполяризационные сдвиги мембранного потенциала. Таким образом, только поздний РП является рецепторным потенциалом П или К в полном значении этого термина.


 

А также другие работы, которые могут Вас заинтересовать

17757. Поршневые пусковые компрессоры 4.37 MB
  Лекция №13. Поршневые пусковые компрессоры. 13.1. Устройство и работа поршневых пусковых компрессоров. На рис. 13.1 представлена принципиальная схема одноступенчатого поршневого компрессора. Поршень движется в цилиндре возвратнопоступательно от верхней мёртвой точки ВМ...
17758. Расчёт многоступенчатого поршневого компрессора 730 KB
  Лекция №14. Расчёт многоступенчатого поршневого компрессора. 14.1 Коэффициент подачи компрессора. Все коэффициенты снижения производительности названные в предыдущей лекции могут быть вычислены на основании зависимостей установленных достаточно простым способом...
17759. Проектирование многоступенчатого поршневого компрессора 375.5 KB
  Лекция №16. Проектирование многоступенчатого поршневого компрессора. 16.1 Выбор числа ступеней. При выборе числа ступеней можно находить минимально возможное число ступеней zmin и оптимальное число ступеней zopt. Минимальное число ступеней устанавливается из условия вз...
17760. Дослідження забруднення повітряного середовища робочої зони 260.5 KB
  Лабораторна робота №9 Дослідження забруднення повітряного середовища робочої зони Вступ Лабораторна робота з дослідження забруднення повітряного середовища робочої зони комплексна. До її складу включені: 1. Лабораторна робота з дослідження запиленості по
17761. ПОЖЕЖНА БЕЗПЕКА. ТЕОРЕТИЧНІ ОСНОВИ ПРОЦЕСІВ ГОРІННЯ ТА ВИБУХУ. 428 KB
  ЛАБОРАТОРНА РОБОТА № 15 ПОЖЕЖНА БЕЗПЕКА Мета роботи допомогти студентам вивчити види пожежної техніки для захисту об'єктів та принципи їх вибору категорії виробництв за вибухопожежонебезпекою та знаки пожежної безпеки. ПОЖЕЖА це неконтрольоване горіння п...
17762. Исследование освещения 243 KB
  Лабораторная работа №1. Исследование освещения. Цель работы: ознакомиться с видами освещения и с нормами проектирования естественного и искусственного освещения; исследовать нормируемые показатели характеризующие освещение в условиях лаборатории; изучить и ис
17763. Исследование параметров производственного шума и определение эффективности звукоизоляции 262.5 KB
  Лабораторная работа №12. Исследование параметров производственного шума и определение эффективности звукоизоляции. Цель работы: изучить методику измерения и оценки основных параметров производственного шума; исследовать звукоизоляционные свойства различных ...
17764. Комплексне дослідження електробезпеки 455 KB
  Комплексне дослідження електробезпеки Мета роботи дослідити характер розподілу крокових напруг і сили струму що протікає через людину при замиканні фази на корпус електроустановки і виявити фактори що впливають на наслідки ураження напругою кроку; ознайомитися ...
17765. Дослідження мікроклімату у виробничих приміщеннях 228.5 KB
  Лабораторна робота №11 Дослідження мікроклімату у виробничих приміщеннях Мета роботи ознайомитись з основними параметрами мікроклімату у виробничих приміщеннях з їх оптимальними та допустимими значеннями набути практичних навичок у користуванні нормативними д...