89640

РЕЦЕПТОРНЫЕ ПОТЕНЦИАЛЫ

Доклад

Биология и генетика

Сдвиг мембранного потенциала фоторецепторной клетки (П или К), который принято называть рецепторным потенциалом, происходит на ее плазмолемме, тогда, как фотоизомеризация родопсина совершается преимущественно во внутриклеточных мембранах, то есть, в мембранных дисках наружных сегментов.

Русский

2015-05-13

52.3 KB

0 чел.

РЕЦЕПТОРНЫЕ ПОТЕНЦИАЛЫ

Сдвиг мембранного потенциала фоторецепторной клетки (П или К), который принято называть рецепторным потенциалом, происходит на ее плазмолемме, тогда, как фотоизомеризация родопсина совершается преимущественно во внутриклеточных мембранах, то есть, в мембранных дисках наружных сегментов.

Свойство фоторецепторных мембран изменяется одновременно с конформационной перестройкой в них опсина. После поглощения (кванта света), спустя 1,5-2 мс, наблюдается гиперполяризация плазмолеммы фоторецепторной клетки (П или К). Следовательно, в палочке (К) существует механизм передачи сигнала с фоторецепторных мембран дисков на плазмолемму П (К). В передаче участвует, так называемый, внутриклеточный посредник, природа которого до настоящего времени полностью не установлена, однако, считают, что в посредничестве участвуют циклический гуанозинмонофосфат (цГМФ) и ионы .

В следствие конформационной перестройки молекул родопсина, в фоторецепторной мембране изменяется содержание внутриклеточного посредника в цитозоле наружного сегмента П или К. Это приводит к закрытию 100-300 натриевых каналов в плазмолемме, которые в отсутствие светового раздражителя пребывали в открытом состоянии. Они обладают свойствами потенциалнезависимых ионных каналов и, будучи управляемые светом, получили название фотозависимых натриевых каналов. Когда закрываются 100-300 каналов, электропроводимость плазмолеммы наружного сегмента падает на 1-3%. Падение мембранной электропроводимости приводит в гиперполяризации фоторецепторной клетки. Гиперполяризационный сдвиг мембранного потенциала П (К), возникающий под действием света, называют рецепторным потенциалом (РП). Принято считать, что ПП фоторецепторной клетки генерируется в темноте на плазмолемме внутреннего сегмента. По своей природе ПП является калиевым потенциалом, подобно всякому мембранному потенциалу в условиях покоя. В темноте ПП палочки (колбочки) составляет примерно от –20 до –40 мВ.

В системе генерации энергетического потенциала П плазмолемма наружного сегмента выполняет роль шунта с переменной электропроводностью. Электропроводность регулируется (управляется) светом при помощи фотозависимых натриевых каналов. Когда все натриевые каналы плазматической мембраны наружного сегмента одной П оказываются заблокированными светом, удельное поверхностное сопротивление этой мембраны достигает величины . В темноте ионный ток, входящий через каналы в цитоплазму, довольно значителен, и составляет примерно 40 nА. А при освещении сетчатки он блокируется, при этом степень его ослабления зависит от интенсивности света. Чем слабее натриевый ток через плазматическую мембрану наружного сегмента, тем больше выражена гиперполяризация в фоторецепторной клетке. Изменение потенциала П (К) во времени имеет вид:

Рецепторные потенциалы одиночной колбочки, возникающие в ответ

на короткие (10 мс) вспышки света при трех разных интенсивностях света

– интенсивность света. Чем больше I, тем больше гиперполяризация .

При поглощении 1 фотона () гиперполяризация фоторецепторов разных представителей животного мира неодинакова. Так, в палочках сетчатки позвоночных животных гиперполяризация составляет десятки и сотни мкВ, тогда, как в фоторецепторных клетках членистоногих она достигает 10 мВ. Эти приведенные числа подтверждают положение об усилении сигнала в рецепторных аппаратах. Действительно, квант света, несущий энергию Дж, вызывает фотолиз только одной молекулы родопсина, что в свою очередь приводит к закрытию в плазмолемме фоторецепторной клетки позвоночных животных 100-300 натриевых каналов. Это приводит к образованию РП. Однако, энергия РП на 3 порядка превосходит энергию вызвавшего его фотона.

Амплитуда рецепторного потенциала возрастает при повышении интенсивности света, падающего на сетчатку, причем, в пределах 1000-кратного изменения интенсивности, эта зависимость имеет логарифмический характер:

- изменение амплитуды РП.

- коэффициент пропорциональности;

- интенсивность последующего;

- интенсивность предыдущего.

При ярком освещении амплитуда рецепторного потенциала может достигать 25 мВ. Величина РП зависит также и от длины волны света. П или К в ответ на зеленый свет (=500 нм), генерируют наибольший РП. Среди К выделено 3 типа:

  1.  дает максимальный ответ РП на синий цвет;
  2.  дает максимальный ответ РП на зеленый цвет;
  3.  дает максимальный ответ РП на желто-красный цвет.

Использование микроэлектронной техники для изучения реакции фоторецепторов на облучение светом, позволило обнаружить деполяризацию П и К, при этом деполяризация предшествует гиперполяризации. Амплитуда деполяризации очень мала и составляет примерно 0,1 мкВ. Учитывая временные соотношения де- и гиперполяризации, первую из них стали называть ранним, а вторую – поздним РП, и обозначили, соответственно, РРП и ПРП. Установлено, что РРП обусловлен преимущественно перемещениями электрических диполей в мембранах наружного сегмента. Эти перемещения диполей связаны с фотолизом молекул родопсина. Другими словами, РРП обусловлен током смещения в фоторецепторных мембранах, и РРП не служит промежуточным звеном передачи сигналов от них к синоптической зоне П или К, при действии света. Эта роль принадлежит гиперполяризации. В отличие от других рецепторных аппаратов, где таким звеном служит деполяризационные сдвиги мембранного потенциала. Таким образом, только поздний РП является рецепторным потенциалом П или К в полном значении этого термина.


 

А также другие работы, которые могут Вас заинтересовать

26460. Морфофункциональная характеристика производных кожного покрова 56.5 KB
  ткань сосуды питание нервы иннервация волоса Волосяная нить имеет З зоны мозговая зона придает прочность построена из кубического эпителия средняя зона построена из плоского эпителия в нём накапливается пигмент наружный слой кутикула роговые чешуйки КЛАССИФИКАЦИЯ остевые – хорошо развит мозговой слой диаметр 70300 мкм покровные волосы длинные волосы челка грива хвост щетина пуховые – отсутствует мозговая зона мягкие располагаются рядом с остевыми диаметр 1540 мкм переходные – мозг зона в виде прерывистой линии...
26461. Морфофункциональная характеристика скелета и деление его на отделы 26 KB
  Морфофункциональная характеристика скелета и деление его на отделы Скелет skeleton кости соединённые в определённой последовательности и формирующие твёрдый каркас тела животного. Определяет форму тела В составе скелета – 200300 костей Л КРС: 207214; ССВ К: 271288 Масса скелета в от общей массы тела: СВ – 6 КРС Л – 15; С К – 10 Скелет является пассивным опорным и несущим...
26462. Морфофункциональная характеристика соединений костей 25.5 KB
  Морфофункциональная характеристика соединений костей ТИПЫ СОЕДИНЕНИЯ КОСТЕЙ СКЕЛЕТА Непрерывный синартроз – при помощи непрерывного слоя ткани Синсаркоз – при помощи мышечной ткани грудная конечность к позвоночному столбу Синдесмоз – при помощи плотной волокнистой соединительной ткани швы связки мембраны sutura шов – прослойка соединительной ткани между костями череп особенно у молодых животных membrana пластинка преобладают коллагеновые волокна между костями предплечья ligamentum связки – пучки коллагеновых...
26463. Морфофункциональная характеристика суставов 31.5 KB
  Морфофункциональная характеристика суставов Прерывный тип соединения сустав diartrosis articulatio Основное образование Добавочное образование cartilago articularis построен из волокнистой гиалиновой ткани отсутствуют кровеносные сосуды обеспечивает защиту уменьшает трение увеличивает размах движения в суставе. простой articulatio simplex – в формировании сустава принимают участие только 2 суставные поверхности плечевой сложный articulatio composita – в формировании сустава принимают участие 3 и более суставных...
26464. Общие закономерности артрологии 19.5 KB
  В сложных суставах кроме длинных боковых связок обязательно имеются: короткие боковые межрядовые межкостные крестовидные общие пальмарные и плантарные На суставах тазовой конечности связок больше чем на грудной. Закон расположения связок: связки всегда расположены перпендикулярно к оси вращения и по бокам. Толщина и количество связок зависят от объема движений в суставе.
26465. Понятие о норме, вариантах и аномалиях строения и развития органов 20.5 KB
  Понятие о норме вариантах и аномалиях строения и развития органов анатомическая норма построения органа – вариант формы и строения органа свойственный каждому виду породе возрасту и полу здорового нормально функционирующего организма который наиболее часто встречаются у домашних животных 5060 Отклонения от установленной нормы средних величин не сопровождающегося нарушением функция вариант аномалия – изменение формы размера расположения строения органа без влияния на его функцию. порок развития изменение формы строения...
26466. Понятие о фило-онтогенезе. Принципы филогенеза 27.5 KB
  геронтологический Основной биогенетический закон закон ГеккеляБэра – пренатальный онтогенез кратко повторяет филогенез последовательно проходит стадии филогенетического развития Северцов дополнение: онтогенез является базой для филогенеза. Закон единства организма и внешней среды Живые системы – открытые они постоянно обмениваются веществами и энергией со средой. Закон целостности и неделимости организма – целостность живого поддерживается в процессе развития. Закон единства формы и функции форма и строение органа определяются его...
26467. Понятие об анатомии как о науке. Объекты и методы исследования 25.5 KB
  Макроскопическая анатомия определяет строение органов определяемое невооруженным глазом. Экспериментальноморфологический испытание лекарственных препаратов клетка  ткань  орган  система органов  организм цитология гистология анатомия Направления нормальной анатомии: системная анатомия сравнительная видовая объекты СА: лошадь домашняя Equis caballis КРС Bos taunus МРС Ovis carpa свинья домашняя Sus domestica собака домашняя Canis...
26468. Понятие об органе, системе и аппарате органов 25 KB
  Органы состоят из тканей tela; ткань – система клеток и неклеточных структур характеризующаяся общим строением и происхождением. Система органов – комплекс морфологически взаимосвязанных однородных органов органы системы имеют общее происхождение строение и функции. Костная система скелет – твёрдый каркас организма Мышечная система скелетная мускулатуравспомагательный аппарат – обеспечивает активное движение ОКП integumentim communnae – защита Система органов пищеварения – приём пищи измельчение переваривание всасывание...