89659

ХИМИЧЕСКАЯ И ФИЗИЧЕСКАЯ ТЕРМОРЕГУЛЯЦИЯ

Доклад

Биология и генетика

Поддержание постоянства температуры организма температурный гомеостазис является необходимым условием жизни человека. Сам по себе метаболизм очень важен для организма и его изменение в условиях поддерживаемой определенной температуры является крайне нецелесообразным. В обычных условиях основным способом поддержания температуры является физическая терморегуляция то есть регуляция температуры за счет следующих механизмов теплоотдачи: Теплообмен организма с окружающей средой происходит на поверхности тела.

Русский

2015-05-13

45.94 KB

0 чел.

ХИМИЧЕСКАЯ И ФИЗИЧЕСКАЯ ТЕРМОРЕГУЛЯЦИЯ

Процессы теплообмена очень важны для жизнеобеспечения организма. Поддержание постоянства температуры организма (температурный гомеостазис) является необходимым условием жизни человека.

В этой связи все процессы, отображенные в уравнении теплового баланса, имеют надежную регуляцию. Различны механизмы химической и физической терморегуляции.

Под химической терморегуляцией понимают возможные усиления или ослабления теплопродукции (М) за счет изменения интенсивности окислительных процессов. Химическая терморегуляция обеспечивается влиянием на обмен веществ (метаболизм). Сам по себе метаболизм очень важен для организма, и его изменение в условиях поддерживаемой определенной температуры, является крайне нецелесообразным. Организм прибегает к химической терморегуляции только в особых случаях.

В обычных условиях основным способом поддержания температуры является физическая терморегуляция, то есть, регуляция температуры за счет следующих механизмов теплоотдачи:

Теплообмен организма с окружающей средой происходит на поверхности тела. Коэффициент теплопроводности живых тканей имеет низкое значение, поэтому роль теплопроводности в отведении тепловой энергии от внутренних органов к поверхности кожи и к слизистым оболочкам - невелика.

Основное значение в этом процессе, то есть, в обеспечении терморегуляции внутренних органов, принадлежит кровообращению. Теплоемкость крови достаточно большая (как у воды), и нормальный кроваток достаточен для эффективного отвода тепла от внутренних органов к поверхности тела. Регуляция такого теплопереноса осуществляется главным образом за счет усиления или ослабления кровотока. Другими словами, посредством сосудистых реакций. При необходимости отдать большее количество тепла, кровеносные сосуды кожи и слизистых оболочек расширяются, что приводит к значительному увеличению массы циркулирующей в них крови, имеющей температуру внутренних органов, при этом возрастает и теплоотдача. Для уменьшения теплоотдачи происходит сужение кровеносных сосудов.

У человека значительные потери тепла происходят через кисти рук и стопы ног. Так, при переходе от холода к теплу, кровообращение в руке человека увеличивается в 30 раз, а в пальцах - примерно в 600 раз.

Испарение является наиболее эффективным способом теплообмена организма при высокой температуре. Физическое терморегулирование является многофакторной системой, которая весьма эффективно обеспечивает постоянство температуры организма. Многофакторность позволяет регулировать температуру тела в различных условиях, при исключении одних механизмов, работают другие.

В биофизике, физиологии и медицине теплопродукцию принято называть энерготратами организма. Энерготраты сильно изменяются в зависимости от условий, в которых находится организм, и в зависимости от характера его деятельности, так как все это влияет на обмен веществ. Для оценки функционального состояния организма необходимо создание стандартных условий при измерении его энерготрат, то есть, при измерении величины тепловой энергии, выделяемой организмом в окружающую среду. За стандартные условия приняты такие, при которых энерготраты организма минимальны. Для этого нужно исключить влияние тех факторов, которые усиливают энергообмен, в частности: мышечная работа, прием пищи, эмоциональное напряжение, отклонение температуры и влажности за пределы зоны комфорта и т.д.

Величину основного обмена (энерготрат) целесообразно измерять в состоянии бодрствования (не во время сна), но пациент должен спокойно лежать в постели. Процедуру рекомендуется проводить рано утром (5-6 часов утра), когда, в соответствии с суточным ритмом, интенсивность метаболизма самая низкая. За двое суток до измерения из рациона пациента исключается животная белковая пища. Измерение проводят натощак, то есть, через 12-14 часов после последнего приема пищи, при этом температура в помещении должна быть в пределах 20- С, а относительная влажность - 50-60 %. Величина теплопродукции измеряется несколько раз для получения статистически достоверного результата.

Так, у здорового мужчины среднего возраста (40-50 лет), средней массой 70 кг, основной обмен составляет 7800 кДж или 1800 ккал за сутки, или ч, что соответствует мощности - 90 Вт. Величина обмена с единицы поверхности человеческого тела составляет примерноч, или 100ч. У женщин основной обмен на 7-10 % меньше. Основной обмен сильно зависит от возраста. У новорожденного он составляет 300ч, а к 70-80 годам понижается до 120ч.

Для определения энерготрат необходимо измерить количество тепла, выделяемое организмом в окружающую среду за определенный промежуток времени. Для этого применяют два метода: прямую и непрямую калориметрию.

В методе прямой калориметрии используются специальные физиологические калориметры, сконструированные таким образом, что в них можно помещать на нужное время животных или человека. Однако далеко не всегда можно реализовать прямую калориметрию. В частности, при изучении энергозатрат в ходе трудовой деятельности.

Чаще всего используют непрямую калориметрию. Этот метод основан на исследовании газообмена организма. Установлено, что между объемом потребляемого организмом и энерготратами существует линейная зависимость при фиксированных условиях. Коэффициентом служит так называемый калориметрический эквивалент , равный количеству тепла, которое образуется в организме при использовании 1 л для окисления питательных веществ.

Калориметрический эквивалент неодинаков при окислении Ж, Б, У, а то, какие вещества преимущественно окисляются в каждом конкретном случае, можно определить по дыхательному коэффициенту, который определяется, как объем выделяемого углекислого газа к объему поглощенного кислорода за один и тот же промежуток времени.

Так, при преимущественном окислении углеводов дыхательный коэффициент (ДК) стремится к 1, а при окислении жиров, он имеет самые низкие значения, примерно 0,7. Существуют специальные таблицы и монограммы, при помощи которых можно определить величину кислородного эквивалента по найденному значению дыхательного коэффициента.

Таким образом, посредством газоанализа измеряются объемы поглощенного кислорода и выделяемого углекислого газа за одно и то же время. Взяв отношение второго к первому рассчитывают ДК. По ДК находят кислородный эквивалент. Умножив его на объем поглощаемого кислорода, определяют энерготраты за время эксперимента.


 

А также другие работы, которые могут Вас заинтересовать

16940. Электрон-транспортная цепь митохондрий 71 KB
  Электронтранспортная цепь митохондрий. Переносчики электронов. NADP/NADPH: N в окисленной форме в восстановленной форме приходят 2е и один протон. FAD FMN – флавиновая система рибофлавин – основа этих переносчиков – три колечка работа на двух азотах. В воссатновле...
16941. Фотосинтез 90.5 KB
  Фотосинтез. Хлорофилл. Красный свет. Если перевести это в моль квантов то будет порядка 17 моль т.е. если поставить равенство между окислительновосстановительным потенциалом то вы видите что энергия одного моля квантов Эйнштейна достаточно высока – 17 эВ. Синий с
16942. Фотосинтез. Фотосистема 99.5 KB
  Фотосинтез. Фотосистема I. Пара Р700 оказалась ключевым моментом почему работает димер. Остальные цепочки – одна оказалась ненужной работает только одна из цепочек но в дальнейшем оказалось что и вторую цепочку можно приспособить для какихто полезных вещей. Об этом...
16943. Цикл Кальвина 86 KB
  Цикл Кальвина. К шести пятиуглеродным сахарам присоединяются 6 молекул СО2 получается шесть нестабильных С6 соединений которые распадаются на 12 С3 соединений. Эта фаза – одна из основных в темновой фазе фотосинтеза т.е. фазе фиксации СО2 и здесь фактически происходит ка...
16944. Биотест веществ ауксиновой природы 89 KB
  Биотест веществ ауксиновой природы. Объект: Капуста краснокочанная Brassica okvacea сорт Мехневская. Цель: Сравнить физиологическое действие искусственных аналогов ауксина 24D и aНУК и естественного ауксина ИУК на прорастающие семена капусты. Выполнение работы. Рабо
16945. Выделение протопластов 30 KB
  Выделение протопластов. Цель: выделить протопласты нескольких видов растений и оценить для этих видов изоосмотическую точку. Введение. Протопласты представляют собой растительные клетки без клеточной стенки. Для их получения необходимо разрушить клеточную стенку...
16946. Социология: Полный курс 1.23 MB
  Т.П. Ритерман Социология: Полный курс За неделю до экзамена Предмет и функции социологии Социология – наука о закономерностях становления функционирования и развития социальных систем. Социальная система –целостное образование основными элементами которог...
16947. Социализм как явление мировой истории 3.39 MB
  Игорь Шафаревич Социализм как явление мировой истории Предисловие Эта книга написана под влиянием убеждения что пережитые уже человечеством в XX веке катаклизмы представляют собой лишь начальную фазу несравненно более глубокого кризиса крутого перелома в те
16948. Политология. Хрестоматия 4.4 MB
  политология В хрестоматии приводятся фрагменты из произведений мыслителей разных эпох. стран и народов позволяющие понять их политические воззрения. Изучение мировой политической классики даст возможность глубже познать проблемы власти государства политической к