89664

КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ

Доклад

Биология и генетика

Что же касается связанных частиц то есть частиц движущихся в ограниченном пространстве в пределах атома или молекулы то решение уравнения Шредингера для этого случая возможно только при некоторых определенных значениях энергии. Это означает что связанная частица может иметь только дискретные значения энергии которые называются собственными. В этой связи электроны атомов характеризуются комбинацией квантовых чисел: Схема уровней энергии молекул является гораздо более сложной чем у атомов. При поглощении молекулой энергии могут...

Русский

2015-05-13

67.7 KB

0 чел.

КВАНТОВОМЕХАНИЧЕСКИЕ ОСНОВЫ БИОЭНЕРГЕТИКИ

Основные понятия квантовой механики

Успехи последних десятилетий в изучении живого организма на молекулярном и субмолекулярном уровнях, позволили проникнуть в молекулярные механизмы его строения и энергетического обеспечения. Квантовая механика представляет собой раздел физики (математики), описывающий общие закономерности движения и взаимодействия микрочастиц. В классической механике четко разграничивают два вида движения:

1. Корпускулярное.

2. Волновое

Для корпускулярного движения характерно то, что объект движется по вполне определенной траектории, и в каждый конкретный момент времени имеет четкую локализацию в пространстве. Для волнового движения, наоборот, характерна делокализация в пространстве. Применительно к волне нельзя сказать, что она находится в данной точке пространства, и не имеет смысла говорить о траектории волны. Применительно к микрочастицам применяют диалектический дуализм, рассматривая их и как частицы, и как волны, то есть, имеет место корпускулярно-волновой дуализм (волны де Бойля). В квантовой механике, уравнение Шредингера играет важную роль, как и второй закон Ньютона в классической механике, и уравнение Максвелла в электродинамике. Уравнение Шредингера в квантовой механике является исходным, основополагающим. И пока оно не выведено из других соотношений. Справедливость этого уравнения доказывается только тем, что выводы, полученные с помощью его, находятся в хорошем соответствии с экспериментальными результатами.

Решения уравнения Шредингера показали, что только свободно движущиеся частицы могут иметь любую энергию. Что же касается связанных частиц, то есть, частиц, движущихся в ограниченном пространстве (в пределах атома или молекулы), то решение уравнения Шредингера для этого случая возможно только при некоторых определенных значениях энергии. Это означает, что связанная частица может иметь только дискретные значения энергии, которые называются собственными. В этой связи электроны атомов характеризуются комбинацией квантовых чисел:

Схема уровней энергии молекул является гораздо более сложной, чем у атомов. Это связано с тем, что в молекулах возможны, помимо движения электронов вокруг ядра, также колебательные и вращательные движения.

При колебательных движениях периодически изменяются относительные расположения ядер в молекуле.

При вращательных движениях изменяется положение в пространстве молекулы, как целого.

Полная энергия молекулы складывается из трех частей:

Вклад каждого вида движения в полную энергию не одинаков, то есть:

Необходимо заметить, что колебательное и вращательное также квантуется.

При поглощении молекулой энергии могут изменяться все виды энергии, поэтому полное изменение энергии будет иметь вид:

Вклад каждой составляющей – неодинаков:

Системы энергетических уровней молекулы представляют собой совокупность далеко отстоящих друг от друга электронных уровней, при этом каждому электронному уровню соответствует набор близкорасположенных колебательных уровней, а каждому колебательному уровню соответствует совокупность еще ближе расположенных вращательных уровней. Упрощенно графически это можно представить так:

Изменение электрической энергии связано с поглощением или с испусканием кванта энергии, видимой или ультрафиолетовой (УФ) области спектра.

Наряду с электронной энергией при этом процессе могут изменяться и. Поэтому, данному электронному переходу в спектре соответствует не одна линия, а ряд близко расположенных линий, которые образуют полосу. В случае простых молекул при наблюдении спектра приборами большой разрешающей силы, видны линии, составляющие полосу. В сложных молекулах обычно наблюдается несколько довольно широких полос. Такие спектры называют электронно-колебательно-вращательными. Они характеризуют молекулу в целом, и их используют для идентификации вещества.

При поглощении молекулой не большой порции энергии, не изменяется, тогда, как и могут возрасти. Колебательным переходам соответствует поглощение в близкой ИК (инфракрасной) области спектра (). При данном изменении колебательной энергии получается полоса, характеризующая колебательно-вращательный спектр. Эти спектры широко используются для изучения сложных молекул. Многие группы, входящие в сложные молекулы, характеризуются вполне определенными частотами колебательных переходов. Эти переходы имеют место при поглощении энергии в далекой ИК области спектра (). Изучая все эти спектры, можно получить достоверную информацию о строении сложных молекул. А это, в свое время, позволяет по базовым данным осуществить из идентификацию.


 

А также другие работы, которые могут Вас заинтересовать

8819. История. Назначение. Системные вызовы. Структура операционных систем. 153 KB
  История. Назначение. Системные вызовы. Структура операционных систем. 1.1 История ОС Первые (1945-1955г.г.) компьютеры работали без операционных систем, как правило, на них работала одна программа. Когда скорость выполнения программ и их количество ...
8820. Процессы и потоки (нити) 130 KB
  Процессы и потоки (нити). 2.1 Процессы 2.1.1 Понятие процесса Процесс (задача) - программа, находящаяся в режиме выполнения. С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данн...
8821. Взаимодействие между процессами 164.5 KB
  Взаимодействие между процессами. 3.1 Взаимодействие между процессами Ситуации, когда приходится процессам взаимодействовать: Передача информации от одного процесса другому Контроль над деятельностью процессов (например: когда они борются...
8822. Планирование процессов в информатике 144 KB
  Планирование процессов. Основные понятия планирования процессов Планирование - обеспечение поочередного доступа процессов к одному процессору. Планировщик - отвечающая за это часть операционной системы. Алгоритм планирования - используемый алгори...
8823. Взаимоблокировка процессов 181.5 KB
  Взаимоблокировка процессов Взаимоблокировка процессов  может происходить, когда несколько процессов борются за один ресурс. Ресурсы бывают выгружаемые и невыгружаемые, аппаратные и программные. Выгружаемый ресурс - это...
8824. Управление памятью. Страничная организация 128.5 KB
  Управление памятью. Страничная организация 6.1 Основные понятия Менеджер памяти - часть операционной системы, отвечающая за управление памятью. Основные методы распределения памяти: Без использования внешней памяти С использованием внешн...
8825. Алгоритмы замещения страниц 116 KB
  Алгоритмы замещения страниц 7.1 Алгоритмы замещения страниц Идеальный алгоритм заключается в том, что бы выгружать ту страницу, которая будет запрошена позже всех. Но этот алгоритм не осуществим, т.к. нельзя знать какую страницу, когда запросят. Мож...
8826. Сегментация памяти 138.5 KB
  Сегментация памяти 8.1 Основные понятия сегментации Рассмотрим пример, когда программа использует одно адресное пространство.   программа использует одно адресное пространство Недостатки такой системы: Один участок может полностью заполниться, но пр...
8827. Устройства и программное обеспечение ввода-вывода 158 KB
  Устройства и программное обеспечение ввода-вывода 9.1 Принципы аппаратуры ввода-вывода 9.1.1 Устройства ввода-вывода Устройства делят на две категории (некоторые не попадают ни в одну): блочные устройства - информация считывается и записываетс...