89682

КАЛИЕВО-НАТРИЕВЫЙ НАСОС

Доклад

Биология и генетика

Компонент помпы является АТФ источник энергии АТФазы которые одновременно служит и переносчиком и сопрягающим фактором. Молекулярный механизм использования энергии АТФ для работы помпы еще полностью не понят однако предполагается что на внутренней стороне БМ находятся молекулярные комплексы способные фосфорелировать за счет присоединения фосфатной группы АТФ. Фосфатная группа отщепляется от АТФ при гидролизе. Для следующего транспортного цикла комплексу необходимо новое фосфорелирование за счет гидролиза АТФ.

Русский

2015-05-13

100.42 KB

2 чел.

КАЛИЕВО-НАТРИЕВЫЙ НАСОС

Благодаря системам активного транспорта для и , поддерживаются стабильные и высокие градиенты концентрации этих ионов на плазмолемме любой клетки. Разница в их молекулярной концентрации между цитозолем и межклеточной средой достигается 10-20 раз. При этом, больше в цитозоли, - в межклеточной среде. При действии концентрационных градиентов входят в нее. Пассивный транспорт привел бы к ликвидации ионного неравновесия, но этому препятствует работа насоса. Он откачивает из цитозоля в межклеточную среду и закачивает в клетку. насос - энергоемкая система.

Компонент помпы является АТФ (источник энергии) АТФазы, которые одновременно служит и переносчиком и сопрягающим фактором. Молекулярный механизм использования энергии АТФ для работы помпы еще полностью не понят, однако, предполагается, что на внутренней стороне БМ находятся молекулярные комплексы, способные фосфорелировать за счет присоединения фосфатной группы АТФ. Фосфатная группа отщепляется от АТФ при гидролизе. Фосфорелирующий транспортный комплекс переносит, связанный с ним на наружную сторону клеточной мембраны, где обменивает на . комплекс транспортирует его внутрь клетки, где он фосфолерируется, то есть, отщепляется фосфатная группа, так как вся свободная энергия истрачена. Для следующего транспортного цикла комплексу необходимо новое фосфорелирование за счет гидролиза АТФ.

В настоящее время есть несколько гипотез, конкретизирующих участие в работе комплекса -АТФазы. Однако, ни одна из них не является общепринятой, но, все модели активного транспорта и предусматривает конфирмацию перестройки -АТФазы. Эти перестройки осуществляются в пространстве БМ.

Некоторые условно полагают, что, будто помпа действует по принципу перистальтического насоса, который переменно открывает и закрывает и , расположенные в БМ по соседству с АТФазой.

Ее конформация перестройки обуславливается чередованием фосфорелирования и дефосфорелирования, обеспечивают изменение проницаемости ионов каналов, при этом, эти насосы работают в противофазе, то есть, когда канал открыт, - закрыт, и наоборот. Согласно этой гипотезе, АТФаз служит не как переносчик, а своеобразное планирование ионных каналов.

Другая гипотетическая схема действия помпы предполагает, что транспорт АТФаз работает, как переносчик. Молекула этого фермента пронизывает плазмолемму насквозь, контактируя одним полюсом с цитоплазмой, другим - с межклеточной средой. В при мембранных участках цитоплазмы находятся митохондрии, из которых выходят молекулы АТФ. АТФ выступает в контакте с БМ, следовательно, и с АТФазой. Содержание ионов Na в цитоплазме поддерживается на строго определенном уровне. АТФаза активируется ионами и , но проявляется при этом ярко выраженная векторность. Ионы действуют на нее только со стороны цитоплазмы, а - только из межклеточной среды. Вместе с тем, ее специфичность по отношению к выше, чем к , так, для включения в действие АТФазы, незаменимы, в то время, как можно заменить одновалентным катионом, причем, с рубидием транспортная система функционирует лучше, чем с . По-видимому, для ферм. характерны различные механизмы распознавания на цитоплазме стороне БМ и других катионов на ее наружной поверхности.

Экспериментально установлено, что за счет гидролиза одной молекулы АТФ осуществляется активный транспорт трех ионов и двух ионов , то есть, их сопряженному трансмембранному переносу свойственна стехиометрия (3/2). Она сохраняется вне зависимости от величины и направления концентрационного и электрического градиентов. Стехиометрия обусловливает электрогенные свойства помпы. Перенос двух внутрь клетки и трех ионов Na из нее, создает разность потенциалов, относительно межклеточной среды. При этом цитозоль имеет отрицательный заряд относительно межклеточной среды (внутри клетки анионов больше, чем катионов).

  насос угнетается различными агентами, из которых наиболее активны следующие:

1. Сердечные гликозиды.

2. Избыток ионов внутри клетки.

3. Дыхательные яды.

Дыхательные яды блокируют окислительное фосфорилирование в митохондриях и, соответственно, они останавливают работу любой системы активного транспорта, то есть, в их действии нет специфичности, так как они лишают свободной энергии активного транспорта. Специфичным плантатором насоса служит строфангин Г (уабаин), который является ингибитором АТФазы. Даже в концентрации, равной м/а, уабаин подавляет активность помпы на 50 %. Под действием гликозидов подавляется выведение из клеток, и приток в них, тогда как пассивный выход из цитозоли не изменяется.


 

А также другие работы, которые могут Вас заинтересовать

37884. Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения жидкости 983 KB
  12 Лабораторная работа № 130 Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения жидкости 1. Изучение диффузии как одного из явлений переноса в газах. Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения воды.1 где проекция вектора градиента концентрации молекул переносимого вещества на указанную ось х D коэффициент диффузии.
37885. Изучение наглядно-действенного мышления у дошкольников 223.5 KB
  Мышление – это психический процесс обобщенного и опосредованного отражения устойчивых, закономерных свойств и отношений действительности, существенных для решения познавательных проблем, схематической ориентации в конкретных ситуациях.
37886. УСТАНОВКА ОБЕРБЕКА 300.5 KB
  ТЕОРЕТИЧЕСКАЯ ЧАСТЬ Согласно основному закону динамики вращательного движения угловое ускорение твёрдого тела способного вращаться вокруг неподвижной оси определяется суммой проекций моментов всех внешних сил на ось вращения: 1 где Mi проекция момента i той силы действующей на тело на ось вращения ε угловое ускорение I момент инерции тела относительно оси вращения. Прибор носит название установка или крест Обербека. Ось закреплена в подшипниках так что вся система может вращаться вокруг горизонтальной оси....
37887. ИСПЫТАНИЕ ВЫТЯЖНОЙ ВЕНТИЛЯЦИОННОЙ 223.16 KB
  атериальное обеспечение. Вытяжной вентиляционный шкаф с воздуховодом, оборудованный шторкой для изменения площади рабочего проёма; анемометр крыльчатый АСО-3, секундомер; комбинированный приёмник воздушного давления, микроманометр многопредельный с наклонной трубкой ММН-240(5)-1,0, шумомер ШУМ-1М.
37888. ЛАБОРАТОРНАЯ РАБОТА № 110. 297.5 KB
  4 ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ НА ОСИ КОЛЬЦЕВОЙ КАТУШКИ Методическое указание к выполнению лабораторной работы по курсу общей физики для студентов инженерно технических специальностей Калининград 2006 1. Цель работы: Исследование магнитного поля на оси катушки: измерить магнитную индукцию в различных точках на оси кольцевой катушки; построить график изменения магнитной индукции вдоль оси катушки; проверить результаты измерения расчётом. Для кольцевой катушки содержащей витков:...
37889. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ДИПОЛЬНОЙ МОДЕЛИ СЕРДЦА 73 KB
  2 ЛАБОРАТОРНАЯ РАБОТА ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ДИПОЛЬНОЙ МОДЕЛИ СЕРДЦА ЛИТЕРАТУРА: Ремизов А. построение кардиограммы дипольной модели сердца. Будем считать что плечо диполя сердца через равные промежутки времени t в условных единицах последовательно принимает значения l приведенные в таблице. Эти графики будут соответствовать кардиограммам I II III отведений на треугольнике Эйнтховена нашей дипольной модели сердца.
37890. Включение фотоэлектрок Олориметра и порядок работы 225.5 KB
  Поставить выключатель гальванометра в положение. Оптическим клином грубой наводки поставить стрелку гальванометра на â0â. Оптическим клином грубой и точной наводки установить стрелку гальванометра на â0â точно.
37891. Определение отношения теплоемкостей газа при постоянном давлении и объеме 1.41 MB
  11 Лабораторная работа № 116 Определение отношения теплоемкостей газа при постоянном давлении и объеме Цель работы Изучение закономерностей изменения параметров состояния газа в различных процессах и определение отношения теплоемкостей воздуха при постоянном давлении и объеме. Удельная и молярная теплоемкости газов зависят как от природы газа так и от условий его нагревания.3 Изменение внутренней энергии идеального газа однозначно определяется его начальным и конечным состояниями тогда как совершаемая газом работа зависит от характера...
37892. Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме резонансным методом 1.34 MB
  12 Лабораторная работа № 119 Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме резонансным методом 1. Теплоемкость и коэффициент Пуассона газа Для характеристики тепловых свойств вещества наряду с другими величинами используют молярную и удельную теплоемкости. Теплоемкость газа зависит от природы его молекул и от того как происходит его нагревание.1 Внутренняя энергия идеального газа это энергия теплового движения его молекул и атомов в молекулах.