89698

КД. ГЕМОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ КРОВИ

Доклад

Биология и генетика

Характер уравнения Пуазелля относительно свидетельствует, что КД зависит от объемной скорости кровотока и следовательно, от массы циркулирующей крови и сократительной деятельности миокарда, которые и определяют эту скорость.

Русский

2015-05-13

53.25 KB

1 чел.

КД. ГЕМОДИНАМИЧЕСКОЕ

СОПРОТИВЛЕНИЕ

 крови оказывает существенное влияние и на второй основной гемодинамический показатель (КД). Для анализа факторов, от которых зависит КД, рассмотрим уравнение Пуазеля относительно изменения давления, которое имеет вид:

l - длина кровеносного сосуда, соответствующего уровня ветвления;

r - радиус сосуда соответствующего уровня ветвления;

Q – объемная скорость кровотока.

- гемодинамическое сопротивление.

[]=[]

Величина Rr отображает сопротивление сосудистого русла кровотоку, включая все факторы, от которых оно зависит. В этой связи Rr оказалось полезной величиной для расчета и моделирования сердечно-сосудистой системы, при создании искусственных аппаратов кровообращения, и при протезировании сердца и сосудов.

Характер уравнения Пуазелля относительно свидетельствует, что КД зависит от объемной скорости кровотока и следовательно, от массы циркулирующей крови и сократительной деятельности миокарда, которые и определяют эту скорость. Еще в большей степени оказывают влияние на динамику КД гемодинамическое сопротивление (Rr) и, прежде всего, такой его компонент, как радиус сосуда, который входит в формулу в 4-ой степени (). В этой связи, изменение r на 20% вызывает изменение КД в сосуде более, чем в 2 раза. Таким образом, даже небольшие колебания просвета кровеносных сосудов оказывают сильное влияние на кровообращение. Не случайно регуляция уровня КД в организме связана с нервными или гуморальным (химическими) влияниями, прежде всего, на гладкомышечную оболочку кровеносных сосудов, в целях активного изменения их просветов. Как правило, на это же направляются основные фармакологические средства, нормализующие КД.

Проанализируем изменение Rr в системе кровообращения на модели разветвленной сосудистой трубки. Rr в разных отделах сосудистой трубки имеет следующее значение:

Гемодинамическое сопротивление в разных сечениях кровеносного русла

1 – аорта; 2 – артерии; 3 – артериоллы; 4 – капилляры; 5 – вены.

Все крупные артерии имеют большой радиус, который мало изменяется в обычных условиях. Поэтому их вклад в Rr и в его изменение незначителен, хотя длина артерии сравнительно велика. По мере удаление от желудочков, число артерий, включаемых параллельно кровотоку возрастает, поскольку при параллельном включении в кровообращение многих (n) сосудов Rr начинает падать в n раз, и вклад этого звена артериального русла должен быть, казалось бы, меньше, по сравнению с вкладом крупных артерий, тем более, что по мере удаления от сердца, каждое разветвление артерий становится короче. Однако, по мере ветвления артерий, уменьшается их радиус, а, поскольку Rr зависит от r в 4 степени, то Rr становится тем больше, чем дальше от сердца расположено данное артериальное русло. Особенно резкое увеличение Rr наблюдается на уровне артериолл. Переход от артериолл к капиллярам характеризуется значительным увеличением количества параллельно включаемых сосудов. Тогда, как радиус прекапилляр (сосуда, принадлежащего последнему звену артериолл) и капилляра примерно одинаковы. В этой связи общее Rr капиллярной сети примерно в 4 раза меньше, чем артериолл. В венозном русле Rr еще меньше, чем в капиллярном.

Отмеченные особенности Rr в различных звеньях кровеносного русла определяют КД в сердечно-сосудистой системе человека. Распределение КД в различных сосудах БКК имеет следующий вид:

Распределение кровяного давления в различных сосудах большого круга кровообращения человека

1 – аорта; 2 – крупные магистральные артерии; 3 - мелкие магистральные артерии;

4 – артериоллы; 5 – капилляры; 6 – венулы; 7 – вены; 8 – полые вены.

В аорте и крупных артериях падение давления невелико. КД в начале и конце таких сосудов почти одинаково. В артериоллах наблюдается максимальный перепад давления, то есть, свыше половины всего общего падения КД в сосудистом русле. В крупных и средних артериях КД неодинаково в систолу и в диастолу. В полых венах КД имеет отрицательное значение. Смысл этого выражения состоит в том, что давление крови в полых венах ниже атмосферного давления на несколько мм рт.ст. принято различать следующие виды КД:

1. Систолическое (max).

2. Диастолическое (min).

3. Пульсовое, равное разности максимального и минимального.

4. Среднее.

Названные виды КД составляют вторую группу основных гемодинамических показателей КД, то есть, той силы, с которой движущаяся кровь давит на единицу поверхности соответствующих сосудов.

Функциональное предназначение кровеносных сосудов в системе кровообращения неодинаково. В биофизике и физиологии принято различать 4 типа кровеносных сосудов:

1 – Артерии эластичного типа. 2 – Артерии мышечного типа.

3 –Капилляры. 4– Вены.

  1.  Артерии эластичного типа поддерживают кровоток во время диастолы желудочков сердца и, тем самым, обеспечивают непрерывность движения крови в сосудистой системе.
  2.  Артерии мышечного типа создают переменное сопротивление кровотоку и, следовательно, регулируют уровень КД в системе кровообращения, а также объемную скорость кровотока в каждом из органов.
  3.  Капилляры осуществляют обмен веществ между кровью и тканями, ради чего и существует вся сердечно-сосудистая система.
  4.  Вены являются емкостными сосудами, так как они обладают выраженной пластичностью и могут сильно деформироваться (растягиваться) без существенного развития напряжения в них. В этой связи в венах сосредоточено примерно 80 % крови, находящейся в БКК.


 

А также другие работы, которые могут Вас заинтересовать

11046. Промышленные роботы. Основные определения и классификация 295.5 KB
  Промышленные роботы. Основные определения и классификация. Общие сведения о промышленных роботах Исторически мехатроника развивается в основном на базе робототехники. Однако мехатронный подход может быть реализован отнюдь не только в робото
11047. Манипуляторы робототехнических систем 219.5 KB
  Манипуляторы робототехнических систем 6.1. Манипулятор. Кинематические пары цепи и схемы. Базовым элементом робота является манипулятор механизм обладающий несколькими степенями подвижности который предназначен для перемещения и ориентации объектов ...
11048. Кинематика манипулятора. Прямая и обратная задача. Геометрия рабочего пространства 179.5 KB
  Кинематика манипулятора. Прямая и обратная задача. Геометрия рабочего пространства. 7.1 Общие сведения о кинематике манипуляторов. В процессе изучения кинематических свойств многозвенных механизмов возникает необходимость описания движения их звеньев без уче...
11049. Мехатронные транспортные средства, устройства бытового и медицинского назначения. Периферийные устройства компьютеров как мехатронные объекты 513.5 KB
  Мехатронные транспортные средства устройства бытового и медицинского назначения. Периферийные устройства компьютеров как мехатронные объекты. 8.1 Мехатронные транспортные средства. Современная автомобильная МС включает как правило целый ряд подсистем выполн
11050. Информационные системы в мехатронике 96.5 KB
  Информационные системы в мехатронике 1. Место и роль информационных систем Информационная система ИС представляет собой совокупность функционально объединенных измерительных вычислительных и других вспомогательных технических средств предназначенных для получ
11051. Первичные измерительные преобразователи 139.5 KB
  Первичные измерительные преобразователи Основные определения Измерительный преобразователь ИП средство измерения предназначенное для преобразования входного измерительного сигнала измеряемой величины в выходной сигнал более удобный для дальнейшего преобра...
11052. Принципы передачи и преобразования информации 130 KB
  Принципы передачи и преобразования информации Во многих встречающихся на практике случаях функциональный блок мехатронного устройства являющийся потребителем информации удален от первичного источника информации например датчика на некоторое иногда довольно зна...
11053. Системы управления мехатронными объектами 123 KB
  Системы управления мехатронными объектами Мехатронные объекты являются ярким примером реализации сложных законов управления. Системы управления применимы в тех случаях когда объект процесс обладает управляемостью т.е. существует возможность изменения его некотор...
11054. Построение структуры системы управления, программная реализация регуляторов 136 KB
  Построение структуры системы управления программная реализация регуляторов Большинство систем процессорного компьютерного управления содержат в своем составе различные регуляторы выполненные программным образом либо реализованные аппаратно. В настоящее время н...