90070

Погрешность результата численного решения задачи

Лекция

Математика и математический анализ

Причины возникновения и классификация погрешности Отклонение истинного решения от приближенного назовем погрешностью. Решение задач всегда имеют погрешность связанную со следующими причинами: 1 созданием математической модели любая модель имеет свою степень точности; 2 получением исходных данных т.д.

Русский

2015-05-29

116.91 KB

4 чел.

ЛЕКЦИЯ 1.

Погрешность результата численного решения задачи

Причины возникновения и классификация погрешности

Отклонение истинного решения от приближенного назовем погрешностью.

Решение задач всегда имеют погрешность, связанную со следующими причинами:

1) созданием математической модели (любая модель имеет свою степень точности);

2) получением исходных данных (т.к. являются "результатом измерений", следовательно, возникают измерительные погрешности);

3)использованием вычислительной техники (ошибки округления, возникающие из-за ограниченной разрядной сетки и ошибки, связанные с самими методами).

На рис. 1 и 2 показаны составляющие неустранимой и полной погрешности.

Рис. 1.

Рис. 2.

Неустранимую погрешность и погрешность метода необходимо контролировать, чтобы не осуществлять расчеты с избыточной точностью.

Характеристиками точности результата решения задачи являются абсолютная и относительная погрешности. Для технических задач 10 % - хорошая точность.

Определение. Если х - точное значение некоторого числа, х* - приближенное, то абсолютной погрешностью приближения х* назовем величину: , т.е. точное значение числа х заключено в границах .

Определение. Отношение абсолютной погрешности к абсолютному значению приближенной величины есть относительная погрешность (т.е. доля истинного значения): , при условии, что .

Пример: Найти абсолютную и относительную погрешности, если х=3.141592, а х*=3.14.

Решение: .

Определение. Значащими цифрами числа называются все цифры в его записи, начиная с первой ненулевой слева.

Пример: У чисел подчеркнуты значащие цифры: 0.010087 и 0.0100870000.

Любое число можно представить в виде , где  - основание системы счисления, n – некоторое целое число (старший десятичный разряд числа х), аi – значащие цифры приближенного числа x.

Определение. Значащая цифра аk считается верной, если имеет место неравенство: , где , в противном случае аk - сомнительная цифра.

Прямая задача теории погрешностей

Основная задача теории погрешностей заключается в следующем: по известным погрешностям некоторой системы параметров требуется определить погрешность функции от этих параметров.

Пусть задана дифференцируемая функция у=f1, х2,,хn) и пусть - абсолютные погрешности аргументов. Тогда абсолютная погрешность функции: (формула Лагранжа).

При зависимости функции от одного параметра .

Определение. Предельной абсолютной погрешностью называют следующую оценку погрешности величины у*, т.е. .

Пусть задана дифференцируемая функция у=f1, х2,,хn) и пусть - относительные погрешности аргументов. Тогда относительная погрешность: или .

Определение. Предельной относительной погрешностью называю величину .

Относительная погрешность суммы

. Пусть , а . Следовательно

Замечание: на практике применяется верхняя оценка.

Правила вычисления погрешностей [1]:

  1.  Предельная абсолютная погрешность суммы или разности равна сумме предельных погрешностей.
  2.  Относительная погрешность суммы положительных слагаемых не превышает наибольшей из относительных погрешностей этих слагаемых.
  3.  Предельная относительная погрешность произведения или частного равна сумме предельных относительных погрешностей.
  4.  Предельная относительная погрешность степени и корня приближенного числа равна произведению предельной относительной погрешности этого числа на показатель степени.

Обратная задача теории погрешности

Обратная задача теории погрешности заключается в следующем: при каких значениях аргумента известная функция у=f1, х2,,хn) будет иметь погрешность не превосходящую заданной величины.

Простейшее решение обратной задачи дается принципом равных влияний. Согласно этому принципу предполагается, что все частные дифференциалы одинаково влияют на образование общей абсолютной погрешности.

Предельная погрешность функции у=f1, х2,,хn) для малых абсолютных погрешностей аргументов : .

Оценка для относительной погрешности функции: или .

Пример: Найти предельные абсолютную и относительную погрешности объема шара , если d=3,7см0,05 см; 3,14.

Решение: Рассмотрим d и  как переменные величины. Вычислим частные производные , . При заданных значениях d и  получаем, что , .

Согласно правилу нахождения предельной абсолютной погрешности, имеем:

.

Поэтому V26,511,1 cм3. Относительная погрешность: .

Задачи.

1. Определить

  1.  число верных знаков приближенного числа, если известна абсолютная погрешность;
  2.  число верных десятичных знаков приближенного числа, если известна абсолютная погрешность;
  3.  абсолютную погрешность числа, если известно число верных знаков;
  4.  абсолютную погрешность, если известна относительная;
  5.  относительную погрешность, если известна абсолютная;
  6.  абсолютную погрешность функции, если известны абсолютные погрешности аргументов:

Вариант

Исходные данные

Вариант

Исходные данные

1.

  1.  x=1,109, Ax=0,110-2;
  2.  x=0,01111, Ax=0,510-3;
  3.  x=1,72911, m=3;
  4.  x=0,3771, x=1%;
  5.  x=32,11511, Ax=0,1110-2;
  6.  .

2.

  1.  x=1,609, Ax=0,110-2;
  2.  x=0,06666, Ax=0,510-3;
  3.  x=1,72916, m=3;
  4.  x=0,377766, x=0,5%;
  5.  x=32,61516, Ax=0,1110-2;
  6.  .

2.

  1.  x=1,209, Ax=0,110-2;
  2.  x=0,02222, Ax=0,510-3;
  3.  x=1,7292, m=3;
  4.  x=0,3772, x=1%;
  5.  x=32,21512, Ax=0,2210-2;
  6.  .

7.

  1.  x=1,709, Ax=0,110-2;
  2.  x=0,07777; Ax=0,510-3;
  3.  x=1,7297, m=3;
  4.  x=0,3777, x=0,5%;
  5.  x=32,71517, Ax=0,7710-2;
  6.  .


Вариант

Исходные данные

Вариант

Исходные данные

3.

  1.  x=1,309, Ax=0,110-2;
  2.  x=0,03333, Ax=0,510-3;
  3.  x=1,7293, m=3;
  4.  x=0,3773, x=1%;
  5.  x=32,91513, Ax=0,3310-2;
  6.  .

8.

  1.  x=1,809, Ax=0,110-2;
  2.  x=0,08888, Ax=0,510-3;
  3.  x=1,7298, m=3;
  4.  x=0,3778, x=0,5%;
  5.  x=32,91515, Ax=0,8810-2;
  6.  .

4.

  1.  x=1,409, Ax=0,110-2;
  2.  x=0,07214, Ax=0,510-3;
  3.  x=1,42914, m=3;
  4.  x=0,4774, x=1%;
  5.  x=32,41514, Ax=0,4410-2;
  6.  .

9.

  1.  x=1,909, Ax=0,110-2;
  2.  x=0,07219, Ax=0,510-3;
  3.  x=1,92919, m=3;
  4.  x=0,9779, x=0,5%;
  5.  x=32,91519, Ax=0,9910-2;
  6.  .

5.

a)   x=1,509, Ax=0,110-2;

  1.  x=0,07215, Ax=0,510-3;
  2.  x=1,52915, m=3;
  3.  x=0,37715, x=1%;
  4.  x=32,51515, Ax=0,5510-2;
  5.  .

10.

a) x=1,9010, Ax=0,110-2;

  1.  x=0,07210, Ax=0,510-3;
  2.  x=1,72910, m=3;
  3.  x=0,97791, x=0,5%;
  4.  x=32,915191, Ax=0,9110-2;
  5.  .

2. Составить программу нахождения суммы ряда с точностью до =0,0001:


 

А также другие работы, которые могут Вас заинтересовать

44309. Менеджмент организаций и администрирование. Методические рекомендации 345.5 KB
  Целью методических рекомендаций является оказание помощи студентам специальности Менеджмент организаций и администрирвоание обучающимся по программе магистров в подготовке и оформлении магистерской работы. Выбор и утверждение темы магистерской работы Структура и содержание магистерской работы Оформление магистерской работы
44311. Зорі та їх скупчення. Галактики. Історія Всесвіту 101 KB
  Зорі це велетенські розкидані по космосу клуби газу які світяться. Зорі настільки далеко що навіть у найпотужніші телескопи здаються нам тільки маленькими крапочками які світяться на нічному небі. Зорі світяться через те що неймовірний тиск у їх центрі викликає реакцію ядерного синтезу.
44312. Влияние новых видов заквасок на качество ржано-пшеничного хлеба 6.78 MB
  Управление процессом приготовления закваски:. Регулирование температуры выведения закваски. Регулирование влажности закваски Регулирование соотношения выброженной закваски и питательной смеси.
44315. Высшая мера наказания в Советской России и Российской Федерации 431.5 KB
  Происхождение понятие и эволюция смертной казни в России с древнейших времен до XVIII века. Происхождение и понятие смертной казни Смертная казнь в Российской Федерации Среди множества проблем активно обсуждаемых сегодня в нашем обществе стоит вопрос о высшей мере наказания смертной...
44316. Разработка автоматизированной информационной системы учета основных средств 6.72 MB
  Основной особенностью системы 1С: Предприятие является её конфигурируемость. Собственно система 1С: Предприятие представляет собой совокупность механизмов, предназначенных для манипулирования различными типами объектов предметной области.
44317. Особенности технологического процесса получения керамики из продукта химического диспергирования сплава Al-Si (12%масс.) 9.97 MB
  Другой проблемой является создание мембран и фильтрующих керамических элементов с многослойной структурой с высокими прочностными свойствами. Одним из решений этой проблемы может стать использование нанокристаллических порошков, в процессе спекания которых, происходит формирование особых многозеренных нанокристаллических структур с высокой прочностью связи на границах зерен