90070

Погрешность результата численного решения задачи

Лекция

Математика и математический анализ

Причины возникновения и классификация погрешности Отклонение истинного решения от приближенного назовем погрешностью. Решение задач всегда имеют погрешность связанную со следующими причинами: 1 созданием математической модели любая модель имеет свою степень точности; 2 получением исходных данных т.д.

Русский

2015-05-29

116.91 KB

4 чел.

ЛЕКЦИЯ 1.

Погрешность результата численного решения задачи

Причины возникновения и классификация погрешности

Отклонение истинного решения от приближенного назовем погрешностью.

Решение задач всегда имеют погрешность, связанную со следующими причинами:

1) созданием математической модели (любая модель имеет свою степень точности);

2) получением исходных данных (т.к. являются "результатом измерений", следовательно, возникают измерительные погрешности);

3)использованием вычислительной техники (ошибки округления, возникающие из-за ограниченной разрядной сетки и ошибки, связанные с самими методами).

На рис. 1 и 2 показаны составляющие неустранимой и полной погрешности.

Рис. 1.

Рис. 2.

Неустранимую погрешность и погрешность метода необходимо контролировать, чтобы не осуществлять расчеты с избыточной точностью.

Характеристиками точности результата решения задачи являются абсолютная и относительная погрешности. Для технических задач 10 % - хорошая точность.

Определение. Если х - точное значение некоторого числа, х* - приближенное, то абсолютной погрешностью приближения х* назовем величину: , т.е. точное значение числа х заключено в границах .

Определение. Отношение абсолютной погрешности к абсолютному значению приближенной величины есть относительная погрешность (т.е. доля истинного значения): , при условии, что .

Пример: Найти абсолютную и относительную погрешности, если х=3.141592, а х*=3.14.

Решение: .

Определение. Значащими цифрами числа называются все цифры в его записи, начиная с первой ненулевой слева.

Пример: У чисел подчеркнуты значащие цифры: 0.010087 и 0.0100870000.

Любое число можно представить в виде , где  - основание системы счисления, n – некоторое целое число (старший десятичный разряд числа х), аi – значащие цифры приближенного числа x.

Определение. Значащая цифра аk считается верной, если имеет место неравенство: , где , в противном случае аk - сомнительная цифра.

Прямая задача теории погрешностей

Основная задача теории погрешностей заключается в следующем: по известным погрешностям некоторой системы параметров требуется определить погрешность функции от этих параметров.

Пусть задана дифференцируемая функция у=f1, х2,,хn) и пусть - абсолютные погрешности аргументов. Тогда абсолютная погрешность функции: (формула Лагранжа).

При зависимости функции от одного параметра .

Определение. Предельной абсолютной погрешностью называют следующую оценку погрешности величины у*, т.е. .

Пусть задана дифференцируемая функция у=f1, х2,,хn) и пусть - относительные погрешности аргументов. Тогда относительная погрешность: или .

Определение. Предельной относительной погрешностью называю величину .

Относительная погрешность суммы

. Пусть , а . Следовательно

Замечание: на практике применяется верхняя оценка.

Правила вычисления погрешностей [1]:

  1.  Предельная абсолютная погрешность суммы или разности равна сумме предельных погрешностей.
  2.  Относительная погрешность суммы положительных слагаемых не превышает наибольшей из относительных погрешностей этих слагаемых.
  3.  Предельная относительная погрешность произведения или частного равна сумме предельных относительных погрешностей.
  4.  Предельная относительная погрешность степени и корня приближенного числа равна произведению предельной относительной погрешности этого числа на показатель степени.

Обратная задача теории погрешности

Обратная задача теории погрешности заключается в следующем: при каких значениях аргумента известная функция у=f1, х2,,хn) будет иметь погрешность не превосходящую заданной величины.

Простейшее решение обратной задачи дается принципом равных влияний. Согласно этому принципу предполагается, что все частные дифференциалы одинаково влияют на образование общей абсолютной погрешности.

Предельная погрешность функции у=f1, х2,,хn) для малых абсолютных погрешностей аргументов : .

Оценка для относительной погрешности функции: или .

Пример: Найти предельные абсолютную и относительную погрешности объема шара , если d=3,7см0,05 см; 3,14.

Решение: Рассмотрим d и  как переменные величины. Вычислим частные производные , . При заданных значениях d и  получаем, что , .

Согласно правилу нахождения предельной абсолютной погрешности, имеем:

.

Поэтому V26,511,1 cм3. Относительная погрешность: .

Задачи.

1. Определить

  1.  число верных знаков приближенного числа, если известна абсолютная погрешность;
  2.  число верных десятичных знаков приближенного числа, если известна абсолютная погрешность;
  3.  абсолютную погрешность числа, если известно число верных знаков;
  4.  абсолютную погрешность, если известна относительная;
  5.  относительную погрешность, если известна абсолютная;
  6.  абсолютную погрешность функции, если известны абсолютные погрешности аргументов:

Вариант

Исходные данные

Вариант

Исходные данные

1.

  1.  x=1,109, Ax=0,110-2;
  2.  x=0,01111, Ax=0,510-3;
  3.  x=1,72911, m=3;
  4.  x=0,3771, x=1%;
  5.  x=32,11511, Ax=0,1110-2;
  6.  .

2.

  1.  x=1,609, Ax=0,110-2;
  2.  x=0,06666, Ax=0,510-3;
  3.  x=1,72916, m=3;
  4.  x=0,377766, x=0,5%;
  5.  x=32,61516, Ax=0,1110-2;
  6.  .

2.

  1.  x=1,209, Ax=0,110-2;
  2.  x=0,02222, Ax=0,510-3;
  3.  x=1,7292, m=3;
  4.  x=0,3772, x=1%;
  5.  x=32,21512, Ax=0,2210-2;
  6.  .

7.

  1.  x=1,709, Ax=0,110-2;
  2.  x=0,07777; Ax=0,510-3;
  3.  x=1,7297, m=3;
  4.  x=0,3777, x=0,5%;
  5.  x=32,71517, Ax=0,7710-2;
  6.  .


Вариант

Исходные данные

Вариант

Исходные данные

3.

  1.  x=1,309, Ax=0,110-2;
  2.  x=0,03333, Ax=0,510-3;
  3.  x=1,7293, m=3;
  4.  x=0,3773, x=1%;
  5.  x=32,91513, Ax=0,3310-2;
  6.  .

8.

  1.  x=1,809, Ax=0,110-2;
  2.  x=0,08888, Ax=0,510-3;
  3.  x=1,7298, m=3;
  4.  x=0,3778, x=0,5%;
  5.  x=32,91515, Ax=0,8810-2;
  6.  .

4.

  1.  x=1,409, Ax=0,110-2;
  2.  x=0,07214, Ax=0,510-3;
  3.  x=1,42914, m=3;
  4.  x=0,4774, x=1%;
  5.  x=32,41514, Ax=0,4410-2;
  6.  .

9.

  1.  x=1,909, Ax=0,110-2;
  2.  x=0,07219, Ax=0,510-3;
  3.  x=1,92919, m=3;
  4.  x=0,9779, x=0,5%;
  5.  x=32,91519, Ax=0,9910-2;
  6.  .

5.

a)   x=1,509, Ax=0,110-2;

  1.  x=0,07215, Ax=0,510-3;
  2.  x=1,52915, m=3;
  3.  x=0,37715, x=1%;
  4.  x=32,51515, Ax=0,5510-2;
  5.  .

10.

a) x=1,9010, Ax=0,110-2;

  1.  x=0,07210, Ax=0,510-3;
  2.  x=1,72910, m=3;
  3.  x=0,97791, x=0,5%;
  4.  x=32,915191, Ax=0,9110-2;
  5.  .

2. Составить программу нахождения суммы ряда с точностью до =0,0001:


 

А также другие работы, которые могут Вас заинтересовать

8101. Воспитание учащихся в коллективе. Структура и динамика воспитания коллектива 24.61 KB
  Воспитание учащихся в коллективе. Структура и динамика воспитания коллектива. Коллектив - высокоразвитая группа с такими характеристиками, как сплоченность, целеустремленность, ценностно-ориентационное единство и пр. Педагогика понимает воспитательн...
8102. Этапы становления воспитательного коллектива 21.85 KB
  Этапы становления воспитательного коллектива Выделены стадии развития коллектива - этапы развития группы детей по характеру предъявляемых педагогом требований, по характеру отношений и взаимодействия между воспитанниками. На первой стадии педаг...
8103. Семейное воспитание. Формы, методы взаимодействия школы с семьей 28.09 KB
  Семейное воспитание. Формы, методы взаимодействия школы с семьей Семья - это малая социальная группа, члены которой связаны браком, родительством и родством, общностью быта, бюджета и взаимной моральной ответственностью. Она имеет ряд функций: репро...
8104. Самовоспитание личности школьника. Педагогическое руководство процессом самовоспитания 26.28 KB
  Самовоспитание личности школьника. Педагогическое руководство процессом самовоспитания. Самовоспитание - это сознательная, целенаправленная самостоятельная деятельность, ведущая к возможно более полной реализации, развитию и совершенствованию личнос...
8105. Синхронизация процессов при помощи семафоров 48 KB
  Синхронизация процессов при помощи семафоров Цель работы: получить представление о синхронизации процессов в ОС UNIX при помощи флагов в разделяемой памяти и процессных семафоров. Иcпользуемые средства: ОС Linux, графическая оболочка KDE, среда разр...
8106. Электрофильтры. Тиристорные пускатели. Козловые краны. Портальные краны 3.16 MB
  Электрофильтры Электрическая очистка(электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Электрофильтры - это высоковольтное электротехническое оборудование, в кот...
8107. Детали машин. Конспект лекций 3.63 MB
  Детали машин Содержание курса Механические передачи Элементы, обеспечивающие вращательное движение (валы и подшипники) Соединения Муфты приводов Цель курса ДМ и ОК: изучение, расчёт и проектирование деталей общемашиностроител...
8108. Организационно-экономическая характеристика хозяйства 212 KB
  Организационно-экономическая характеристика хозяйства Общие сведения о предприятии, его специализация Коммунальное сельскохозяйственное унитарное предприятие Коленское Житковичского района Гомельской области образовано на базе со...
8109. Экспертиза наличных денежных средств, определение платежеспособности валюты РФ, обмен денежных купюр, виды приборов, с помощью которых определяют подлинность денежных знаков 4.2 MB
  Введение История возникновение денег. Деньги появились как некий необходимый при возникновении товарообмена универсальный измеритель. Деньги за свою историю принимали самые различные и необычные формы. Постепенно люди перешли к деньгам в виде металл...