90070

Погрешность результата численного решения задачи

Лекция

Математика и математический анализ

Причины возникновения и классификация погрешности Отклонение истинного решения от приближенного назовем погрешностью. Решение задач всегда имеют погрешность связанную со следующими причинами: 1 созданием математической модели любая модель имеет свою степень точности; 2 получением исходных данных т.д.

Русский

2015-05-29

116.91 KB

4 чел.

ЛЕКЦИЯ 1.

Погрешность результата численного решения задачи

Причины возникновения и классификация погрешности

Отклонение истинного решения от приближенного назовем погрешностью.

Решение задач всегда имеют погрешность, связанную со следующими причинами:

1) созданием математической модели (любая модель имеет свою степень точности);

2) получением исходных данных (т.к. являются "результатом измерений", следовательно, возникают измерительные погрешности);

3)использованием вычислительной техники (ошибки округления, возникающие из-за ограниченной разрядной сетки и ошибки, связанные с самими методами).

На рис. 1 и 2 показаны составляющие неустранимой и полной погрешности.

Рис. 1.

Рис. 2.

Неустранимую погрешность и погрешность метода необходимо контролировать, чтобы не осуществлять расчеты с избыточной точностью.

Характеристиками точности результата решения задачи являются абсолютная и относительная погрешности. Для технических задач 10 % - хорошая точность.

Определение. Если х - точное значение некоторого числа, х* - приближенное, то абсолютной погрешностью приближения х* назовем величину: , т.е. точное значение числа х заключено в границах .

Определение. Отношение абсолютной погрешности к абсолютному значению приближенной величины есть относительная погрешность (т.е. доля истинного значения): , при условии, что .

Пример: Найти абсолютную и относительную погрешности, если х=3.141592, а х*=3.14.

Решение: .

Определение. Значащими цифрами числа называются все цифры в его записи, начиная с первой ненулевой слева.

Пример: У чисел подчеркнуты значащие цифры: 0.010087 и 0.0100870000.

Любое число можно представить в виде , где  - основание системы счисления, n – некоторое целое число (старший десятичный разряд числа х), аi – значащие цифры приближенного числа x.

Определение. Значащая цифра аk считается верной, если имеет место неравенство: , где , в противном случае аk - сомнительная цифра.

Прямая задача теории погрешностей

Основная задача теории погрешностей заключается в следующем: по известным погрешностям некоторой системы параметров требуется определить погрешность функции от этих параметров.

Пусть задана дифференцируемая функция у=f1, х2,,хn) и пусть - абсолютные погрешности аргументов. Тогда абсолютная погрешность функции: (формула Лагранжа).

При зависимости функции от одного параметра .

Определение. Предельной абсолютной погрешностью называют следующую оценку погрешности величины у*, т.е. .

Пусть задана дифференцируемая функция у=f1, х2,,хn) и пусть - относительные погрешности аргументов. Тогда относительная погрешность: или .

Определение. Предельной относительной погрешностью называю величину .

Относительная погрешность суммы

. Пусть , а . Следовательно

Замечание: на практике применяется верхняя оценка.

Правила вычисления погрешностей [1]:

  1.  Предельная абсолютная погрешность суммы или разности равна сумме предельных погрешностей.
  2.  Относительная погрешность суммы положительных слагаемых не превышает наибольшей из относительных погрешностей этих слагаемых.
  3.  Предельная относительная погрешность произведения или частного равна сумме предельных относительных погрешностей.
  4.  Предельная относительная погрешность степени и корня приближенного числа равна произведению предельной относительной погрешности этого числа на показатель степени.

Обратная задача теории погрешности

Обратная задача теории погрешности заключается в следующем: при каких значениях аргумента известная функция у=f1, х2,,хn) будет иметь погрешность не превосходящую заданной величины.

Простейшее решение обратной задачи дается принципом равных влияний. Согласно этому принципу предполагается, что все частные дифференциалы одинаково влияют на образование общей абсолютной погрешности.

Предельная погрешность функции у=f1, х2,,хn) для малых абсолютных погрешностей аргументов : .

Оценка для относительной погрешности функции: или .

Пример: Найти предельные абсолютную и относительную погрешности объема шара , если d=3,7см0,05 см; 3,14.

Решение: Рассмотрим d и  как переменные величины. Вычислим частные производные , . При заданных значениях d и  получаем, что , .

Согласно правилу нахождения предельной абсолютной погрешности, имеем:

.

Поэтому V26,511,1 cм3. Относительная погрешность: .

Задачи.

1. Определить

  1.  число верных знаков приближенного числа, если известна абсолютная погрешность;
  2.  число верных десятичных знаков приближенного числа, если известна абсолютная погрешность;
  3.  абсолютную погрешность числа, если известно число верных знаков;
  4.  абсолютную погрешность, если известна относительная;
  5.  относительную погрешность, если известна абсолютная;
  6.  абсолютную погрешность функции, если известны абсолютные погрешности аргументов:

Вариант

Исходные данные

Вариант

Исходные данные

1.

  1.  x=1,109, Ax=0,110-2;
  2.  x=0,01111, Ax=0,510-3;
  3.  x=1,72911, m=3;
  4.  x=0,3771, x=1%;
  5.  x=32,11511, Ax=0,1110-2;
  6.  .

2.

  1.  x=1,609, Ax=0,110-2;
  2.  x=0,06666, Ax=0,510-3;
  3.  x=1,72916, m=3;
  4.  x=0,377766, x=0,5%;
  5.  x=32,61516, Ax=0,1110-2;
  6.  .

2.

  1.  x=1,209, Ax=0,110-2;
  2.  x=0,02222, Ax=0,510-3;
  3.  x=1,7292, m=3;
  4.  x=0,3772, x=1%;
  5.  x=32,21512, Ax=0,2210-2;
  6.  .

7.

  1.  x=1,709, Ax=0,110-2;
  2.  x=0,07777; Ax=0,510-3;
  3.  x=1,7297, m=3;
  4.  x=0,3777, x=0,5%;
  5.  x=32,71517, Ax=0,7710-2;
  6.  .


Вариант

Исходные данные

Вариант

Исходные данные

3.

  1.  x=1,309, Ax=0,110-2;
  2.  x=0,03333, Ax=0,510-3;
  3.  x=1,7293, m=3;
  4.  x=0,3773, x=1%;
  5.  x=32,91513, Ax=0,3310-2;
  6.  .

8.

  1.  x=1,809, Ax=0,110-2;
  2.  x=0,08888, Ax=0,510-3;
  3.  x=1,7298, m=3;
  4.  x=0,3778, x=0,5%;
  5.  x=32,91515, Ax=0,8810-2;
  6.  .

4.

  1.  x=1,409, Ax=0,110-2;
  2.  x=0,07214, Ax=0,510-3;
  3.  x=1,42914, m=3;
  4.  x=0,4774, x=1%;
  5.  x=32,41514, Ax=0,4410-2;
  6.  .

9.

  1.  x=1,909, Ax=0,110-2;
  2.  x=0,07219, Ax=0,510-3;
  3.  x=1,92919, m=3;
  4.  x=0,9779, x=0,5%;
  5.  x=32,91519, Ax=0,9910-2;
  6.  .

5.

a)   x=1,509, Ax=0,110-2;

  1.  x=0,07215, Ax=0,510-3;
  2.  x=1,52915, m=3;
  3.  x=0,37715, x=1%;
  4.  x=32,51515, Ax=0,5510-2;
  5.  .

10.

a) x=1,9010, Ax=0,110-2;

  1.  x=0,07210, Ax=0,510-3;
  2.  x=1,72910, m=3;
  3.  x=0,97791, x=0,5%;
  4.  x=32,915191, Ax=0,9110-2;
  5.  .

2. Составить программу нахождения суммы ряда с точностью до =0,0001:


 

А также другие работы, которые могут Вас заинтересовать

11237. Talk about a short trip to Edinburgh and what you can see there 24 KB
  Talk about a short trip to Edinburgh and what you can see there. Traveling is necessary for all of us as it is a kind of relaxation and a good opportunity to relax your body broadens our mind as well. Many people like visiting beautiful places and look forward to going on a holiday just to escape from their daily routine even if their trip will be very short. There are many fascinating cities all over the world. And Edinburgh is one of them. A coach tour of this city will ta...
11238. Предприятие - основное звено экономики 77 KB
  1 Предприятие основное звено экономики 1.1 Предприятие основное звено экономики. Предприятие в рыночной среде. 1.2 Классификация предприятий. 1.3 Организационноправовые формы предприятий. 1.4 Производственная структура. 1.1 Предприятие основное звено экономи...
11240. Планирование производства и реализации продукции на предприятиях 72.5 KB
  2. Планирование производства и реализации продукции на предприятиях 2.1 Планирование производства продукции на предприятии 2.2 Обоснование плана производства по расчётам плановой мощности 2.3 Виды производственных мощностей порядок их расчета и пути улучшения испо
11241. Основные средства предприятия 128.5 KB
  3. Основные средства предприятия 3.1 Экономическая сущность состав и структура основных средств предприятия 3.2 Виды оценок основных фондов 3.3 Износ и амортизация основных средств 3.4 Показатели и пути улучшения использования основных средств предприятия 3.1 Эк...
11242. Оборотные средства. Состав, структура и стадии оборачиваемости ОС 82 KB
  4. Оборотные средства 4.1. Состав структура и стадии оборачиваемости оборотных средств. 4.2. Нормирование оборотных средств. 4.3. Показатели и пути улучшения использования оборотных средств. 4.1 Состав структура и стадии оборачиваемости ОС Наряду с основными фондами
11243. Трудовые ресурсы предприятия 85.5 KB
  5. Трудовые ресурсы предприятия Основы управления персоналом. Классификация персонала предприятия определение численности работающих. Производительность труда: значение показатели и резервы роста. Системы и формы оплаты труда. 5.1...
11244. Себестоимость продукции. Понятие и классификация издержек предприятия 76 KB
  6. Себестоимость продукции Понятие и классификация издержек предприятия. Понятие и порядок калькуляции себестоимости продукции. Составление сметы затрат на производство. Пути снижения себестоимости продукции. 6.1 Понятие и классифи...
11245. Прибыль и рентабельность. Прибыль и рентабельность предприятия 53.5 KB
  7. Прибыль и рентабельность Прибыль и рентабельность предприятия. Образование распределение и использование прибыли на предприятии. 7.1 Прибыль и рентабельность предприятия. Прибыль характеризует экономический эффект деятельности п