90261

МАТРИЦЫ. ОПЕРАЦИИ НАД МАТРИЦАМИ

Лекция

Информатика, кибернетика и программирование

Число столбцов в первой матрице совпадает с числом строк во второй матрице, поэтому произведение АВ существует. Положим С = АВ. В матрице С столько же строк, сколько в матрице А, и столько же столбцов, сколько в матрице В, т.е. матрица С размеров...

Русский

2015-06-01

78 KB

1 чел.

ТЕМА № 1

МАТРИЦЫ. ОПЕРАЦИИ НАД МАТРИЦАМИ

  1.  Матрицы

Определение. Матрицей размером тп называется прямоугольная таблица, составленная из тп чисел и имеющая т строк и п столбцов. Числа ij, составляющие матрицу, называются элементами   матрицы. Каждый элемент матрицы снабжен двумя индексами: первый индекс указывает номер строки, второй – номер столбца, в котором расположен этот элемент.

Для изображения матрицы употребляют круглые скобки и часто обозначают ее одной буквой, например,

А=(ij)=                                                                          (1)

Первый индекс i  (i  = 1, 2, …m) обозначает номер строки, второй  j (j = 1, 2, …n) – столбец матрицы. Матрицу принято обозначать  заглавными буквами, например А, В, С и т.д.

Горизонтальный ряд чисел называется строкой, а вертикальный – столбцом.

Определение. Если т = п, то матрица называется квадратной матрицей порядка n. Число ее строк или столбцов называется порядком матрицы.

Определение. Если же m  n, то матрица называется прямоугольной матрицей.

Определение. Две матрицы считаются равными, если они имеют одинаковые размеры и их соответствующие элементы равны. Пусть А = (ij) размером т п, В = (ij) размером pq. A = B, если m = p, n = q и ij = ij для i = 1, 2, …, m, j = 1, 2, …, n.

Определение. Последовательность элементов квадратной матрицы с одинаковыми индексами (i  =  j) называется главной диагональю матрицы  (11, 22, 33,…,nn)/

Определение. Если в квадратной матрице все недиагональные элементы равны нулю (ij= 0, при i = j), то матрица называется диагональной.

А =                                                                           

Определение. Квадратная диагональная матрица, у которой элементы главной диагонали равны единице, называется единичной матрицей Е.

А = 

Определение. Матрица, все элементы которой равны нулю, называется нуль-матрицей.

Определение. Матрица, состоящая только из одной строки, называется матрицей-строкой.

Определение. Матрица, состоящая только из одного столбца, называется матрицей-столбцом.

Определение. Матрицу Аt называют транспонированной по отношению к матрице А,если она получена из матрицы А заменой строк этой матрицы её столбцами, и, наоборот, столбцов строками. 

Например, пусть А - матрица размеров т п:

транспонированная ей матрица:

Можно сказать, что транспонированная матрица получается переворачиванием матрицы вокруг главной диагонали.

Переход от матрицы А к матрице Аt  называют операцией транспонирования.

Перечислим свойства операции транспонирования:

  1.  (At)t = A,
    1.  (A + B)t = At + Bt,
    2.  (A)t = At,
    3.  (AB)t = BtAt.

2. Операции над матрицами.

Определение. Суммой двух матриц А = (ij) и В = (ij) одинаковых размеров т п называется матрица  С того же размера, элементы которых равны  сумме соответствующих элементов  матриц А и В.  С=А + В = (ij + ij) для i = 1, 2, …, m, j = 1, 2, …, n. Ясно, что сложение матриц сводится к сложению всех пар соответствующих элементов. Для матриц разных размеров сумма не определена.

Сложение матриц подчиняется законам:

А + В = В + А (переместительный закон)

(А + В) + С = А + (В + С) (сочетательный закон)

А + О = О + А = А.

Для любой матрицы А размеров т п существует матрица В тех же размеров такая, что А + В = В + А = О. При этом если  А = (ij) и В = (ij), то ij = - ij. Матрица В называется матрицей, противоположной матрице А и обозначается – А.

Определение. Произведением матрицы А = (ij) размером т п на число называется матрица (ij) тех же размеров, которая обозначается А.

Свойства  умножения матрицы на число:

1. (А) = ()А.

( + )А = А + А.

(А + В) = А + В.

1А = А.

Разность двух матриц  А и В одинаковых размеров определяется равенствами:

А – В = А + (- В) = А + (-1)В.

Определение. Произведением матрицы А = (ij) размеров т п на матрицу В = (ij) размеров nk называется матрица С = (сij) размеров mk, каждый элемент сij которой вычисляется по формуле

сij = i11j + i22j + … + innj ,   i = 1,2,…,m; j = 1,2,…,n.         (2)       

                                  

Другими словами, элемент сij равняется сумме произведений элементов строки с номером i матрицы А на соответствующие элементы столбца с номером j матрицы В. Произведение матрицы А на матрицу В обозначается АВ.

Замечание:  Операция умножения двух матриц выполнима лишь в том случае, когда число столбцов первой матрицы – сомножителя А должно равняться числу строк второй матрицы  сомножителя В. Если это условие не выполнено, произведение не существует.

Для запоминания формулы (2) пользуются мнемоническим правилом: «умножение i-той строки матрицы А на j-тый столбец матрицы В».

Приведем примеры умножения матриц.

  1.  Вычислить произведение АВ, где

Число столбцов в первой матрице совпадает с числом строк во второй матрице, поэтому произведение АВ существует. Положим С = АВ. В матрице С столько же строк, сколько в матрице А, и столько же столбцов, сколько в матрице В, т.е. матрица С размеров 23. Пусть С = (сij), тогда по формуле (2) получаем

с11 = 2(-1) + 32 = 4,    с12 = 22 + 31 = 7,   с13 = 20 + 3(-1) = - 3,  

с21 =(-1)(-1) + 42 = 9,    с22 =(-1)2 + 41 = 2,  с23 = (-1)0 + 4(-1) = - 4.

Записав эти числа в матрицу, получим

Заметим, что произведение ВА не существует, поскольку число столбцов в матрице В не равно числу строк в матрице А.

2.

3.

4.

5.

Свойства умножения матриц:

Умножение матриц в некоторых отношениях похоже на умножение чисел, а в других отношениях отличается от умножения чисел.

  1.  Для чисел  = . Для матриц из существования произведения АВ даже не следует существование произведения ВА (см. пример 1 из предыдущего пункта). Если оба произведения АВ и ВА существуют, то это могут быть матрицы разных размеров (см. примеры 4 и 5 из предыдущего пункта). Даже если матрицы АВ и ВА существуют и имеют одинаковые размеры, в общем случае АВ ВА. Например,

  

  1.  Если для чисел  = 0, то один из сомножителей равен нулю. Но для матриц, как видно из приведенного примера, равенство АВ = О может выполняться и в случае, когда А О и В О.
  2.  Умножение матриц, подобно умножению чисел, подчиняется ассоциативному закону:

(АВ)С = А(ВС).

  1.  Известно, что сложение и умножение чисел связаны дистрибутивным законом. Свойство дистрибутивности умножения относительно сложения для матриц выражается двумя равенствами:

(А + В)С = АС + ВС,

А(В + С) = АВ + АС.

  1.  (АВ) = (А)В = А(В).

3.След матрицы

Следом квадратной матрицы А называется сумма ее диагональных элементов. След матрицы обозначается trA. Таким образом, если А матрица порядка п, то

trA = 11 + 22 + … + nn.

Перечислим свойства следа матрицы:

tr(A) = tr(A);

tr(A + B) = trA + trB;

tr(AB) = tr(BA).


 

А также другие работы, которые могут Вас заинтересовать

65230. Польські біженці в Росії (серпень 1914 р. – листопад 1917 р.) 238.5 KB
  Вивчення становища польських біженців у внутрішніх губерніях Росії повязано з їх важливим місцем у соціальній історії країни в роки Першої світової війни. Лише після розпаду СРСР на теренах колишніх союзних республік внаслідок цілої низки...
65231. КРИМІНАЛЬНЕ ПЕРЕСЛІДУВАННЯ, ЗДІЙСНЮВАНЕ СЛІДЧИМ 177.5 KB
  Державна функція боротьби зі злочинністю у межах кримінального процесу трансформується у кримінальнопроцесуальний напрям діяльності яким є функція кримінального переслідування.
65232. Оптично-прозорі люмінесціюючі полімерні матеріали на основі меламіно-формальдегідних олігомерів 165 KB
  Отже проведення системних досліджень з отримання оптичнопрозорих люмінесціюючих полімерних матеріалів на основі МФ олігомерів є актуальним і викликає як теоретичний так і практичний інтерес. Розроблення оптичнопрозорих люмінесціюючих полімерних...
65233. Методи управління комп’ютерною мережею за наявності затримок управляючої інформації 668.5 KB
  Актуальність теми дисертаційної роботи визначається тим що вона відповідає пріоритетним напрямам розвитку науки техніки та критичних технологій в частині розвитку інформаційнотелекомунікаційних систем і розробки інтелектуальних систем управління СУ.
65234. БУХГАЛТЕРСЬКИЙ ОБЛІК ТА АНАЛІЗ ЗАГАЛЬНОВИРОБНИЧИХ ВИТРАТ: ТЕОРІЯ, МЕТОДИКА, ОРГАНІЗАЦІЯ 243.5 KB
  Зниження темпів нарощення обсягів виробництва яке спостерігається у кондитерській галузі України протягом останніх років викликано не лише загальноекономічними чинниками а й недоліками внутрішнього управління підприємств кондитерської галузі зокрема управління виробничими витратами.
65235. Формування готовності вчителів до проектно-впроваджувальної діяльності в системі післядипломної педагогічної освіти 483.5 KB
  У період інноваційних зрушень у галузі освіти особливо актуальною є проблема формування готовності вчителів до проектно-впроваджувальної діяльності в закладах післядипломної освіти. Основні вимоги до педагогічних кадрів та рівня їхньої підготовки щодо реалізації стратегічних цілей...
65236. Розробка методів оцінювання технічного стану та залишкової довговічності тривало експлуатованих роликів машин безперервного лиття заготовок 279 KB
  Розливання сталі на машинах безперервного лиття МБЛЗ є основним способом одержання заготовок для виготовлення листового і сортового прокату. Основою роботоздатності МБЛЗ є конструктивна міцність роликів яку понижують поверхневі втомні тріщини...
65237. ЦІННІСНИЙ АСПЕКТ ФІЗИЧНОЇ КУЛЬТУРИ В УСНІЙ НАРОДНІЙ ТВОРЧОСТІ УКРАЇНЦІВ 185.5 KB
  Актуальність дослідження. Фізична культура є результатом багатогранної творчої діяльності суспільства. Вона успадковує цінності, створені суспільством на попередніх етапах, і розвиває їх залежно від політичних, економічних...
65238. Пріоритети бюджетної політики в умовах економічних перетворень 198.5 KB
  Бюджетна політика є однією з основних складових державного регулювання економіки країни визначення бюджетної пріоритетності достатньо суттєво впливає на структурні перетворення у галузях економіки соціальній сфері рівень людського...