90569

Логика высказываний. Логика предикатов. Реляционная логика

Курсовая

Математика и математический анализ

Целью данной курсовой работы является знакомство с методами решений задач логики высказываний, логики предикатов и реляционной логики. Ознакомиться с алгеброй логики высказываний и исчислением высказываний, рассмотреть алгебру логики предикатов и исчисление предикатов, изучить реляционную алгебру.

Русский

2015-06-07

252.5 KB

7 чел.

ВПП

ВПП

У→П

ВПП

ВПП

У→П

У→П

a x

a x

by

У

У

КУРСОВАЯ РАБОТА

по дисциплине «Математическая логика и теория алгоритмов»

на тему: «Логика высказываний. Логика предикатов. Реляционная логика»


C
одержание

[1]
Введение

[2]
1 Логика высказываний

[3]
2 Логика предикатов

[4] Рисунок 12 – Граф дедуктивного вывода

[5] 3 Реляционная алгебра

[6] Заключение

[7]
Список литературы


Введение

В середине XX века развитие вычислительной техники привело к появлению логических электронных элементов, логических блоков и устройств вычислительной техники, что было связано с дополнительной разработкой таких областей логики, как проблемы логического синтеза, логическое проектирование и логического моделирования логических устройств и средств вычислительной техники. Эти проблемы изучает теория алгоритмов, основанная на математике, и математической логике в частности. Математическая логика нашла широкое применение в языках программирования. А в 80-х годах XX века начались исследования в области искусственного интеллекта на базе языков и систем логического программирования. Это направление является самым развивающимся и перспективным.

Поэтому целью данной курсовой работы является знакомство с методами решений задач логики высказываний, логики предикатов и реляционной логики.

Задачами, которые будут решаться в работе, являются:

- ознакомиться с алгеброй логики высказываний и исчислением высказываний,  

- рассмотреть алгебру логики предикатов и исчисление предикатов,

- изучить реляционную алгебру.

Для решения поставленных задач использовался теоретический материал научных работ  Лаврова И.А., Максимовой Л.Л. и Пономарева В.Ф.


1 Логика высказываний

1.1 Выполнить задания по алгебре высказываний и исчислению высказываний:

{(AB); (A→C); (B→D)}├ CD

Обозначим F=AB , G=A→C, H=B→D, J=CD

а. Построить таблицу истинности.

Рисунок 1 – Таблица истинности

A

B

C

D

AB

A→C

B→D

CD

F

G

H

J

0

0

0

0

0

1

1

0

0

0

0

1

0

1

1

1

0

0

1

0

0

1

1

1

0

0

1

1

0

1

1

1

0

1

0

0

1

1

0

0

0

1

0

1

1

1

1

1

0

1

1

0

1

1

0

1

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

0

1

0

0

0

1

1

0

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

В таблице истинности жирным шрифтом выделены столбцы с посылками, а жирным и курсивом выделено заключение. Смотря на те строчки, в которых истины все посылки одновременно видно, что заключение также истинно. Поэтому можно сделать вывод, что данное заключение выводимо из данного множества посылок.

б. Упростить посылки и заключения, т.е. привести их к базису {, &, } с минимальным числом операций:

F = A C = AC 

G = BD = BD

Формулы H и J остаются без изменения.

в. Привести посылки и заключение к базисам {, &} и {, }:

H=AvB=(A&B) (в базисе {, &})

H=AvB (в базисе {, })

F = = AC= AC = (A&C) = (A&C) (в базисе {, &})

F = AC = AC (в базисе {, })

G = BD = BD = (B&D) = (B&D) (в базисе {, &})

G = BD = BD (в базисе {, })

J=CvD=(C&D) (в базисе {, &})

J=CvD (в базисе {, })

г. Для посылок и заключения построить КНФ, ДНФ, СКНФ, СДНФ:

H = AvB  (КНФ, ДНФ, СКНФ)

H = (A&B) (A&B) (A&B) (СДНФ, построенная с помощью таблицы истинности);

F = AC = AC (КНФ, ДНФ, СКНФ)

F = (A&C) (A&C) (A&C) (СДНФ, построенная с помощью таблицы истинности);

G = BD = BD (КНФ, ДНФ, СКНФ)

G = (B&D) (B&D) (B&D) (СДНФ, построенная с помощью таблицы истинности);

J = CvD  (КНФ, ДНФ, СКНФ)

J = (C&D) (C&D) (C&D) (СДНФ, построенная с помощью таблицы истинности);

д. Доказать истинность заключения путём построения дерева доказательства

вп {AvC}├ AvC

     {AvC; DvC}├ AvC   вп {DvC}├ DvC

mp{AvC; DvC}├ AB→DC

    {A→C}├ AB→DC                                {AB}├ AB

вп {AB; A→C}├ AB→DC                 вп {AB; A→C}├ AB

                                                                mp {B→D}├ BC→CD

                                                                 вп {AB; B→D}├ BC→CD

    {AB; A→C}├ BC                       вп {AB; A→C; B→D}├ BC→CD

mp                                   {AB; AC; BD}├ CD

Рисунок 2 – Граф построения дерева доказательства

е. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

        AB                         A→C                     B→D

                      m.p.         AB→BC           BC→CD

                   BC

                                                     m.p.

                                                   CD

Рисунок 3 – Граф дедуктивного вывода

ж. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты):

Приведем посылки и отрицание заключения к виду КНФ:

H = AvB  

F = A→C = AC

G = B→D = BD

J == (CD)=( C)&( D)

K = { AvB, AC, BD, C, D }

Построим граф вывода пустой резольвенты:

     AC           C           AB           BD           D

          A

                      B

                                D

                                                                                           

Рисунок 4 – Граф вывода пустой резольвенты


1.2 Выполнить задания по алгебре высказываний и исчислению высказываний:

{A (BC);AB;A} |- C

Обозначим F= A (BC), G=AB, H=A и J=C.

а. Построить таблицу истинности.

Рисунок 5 – Таблица истинности

A

B

C

AB

BC

A(BC)

H

J

G

F

0

0

0

1

1

1

0

0

1

1

1

1

0

1

0

1

0

1

0

1

1

1

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

1

0

1

0

0

1

1

1

1

1

1

В таблице истинности жирным шрифтом выделены столбцы с посылками, а жирным и курсивом выделено заключение. Смотря на те строчки, в которых истины все посылки одновременно (в данном случае это последняя строчка, которая выделена жирной рамкой), видно, что заключение также истинно. Поэтому можно сделать вывод, что данное заключение выводимо из данного множества посылок.

б. Упростить посылки и заключения, т.е. привести их к базису {, &, } с минимальным числом операций:

F = A (BC) = A(BC) = ABC

G = AB = AB

Формулы H и J остаются без изменения.

в. Привести посылки и заключение к базисам {, &} и {, }:

F = A (BC) = ABC = (A&(BC)) = (A&B&C) = (A&B&C) (в базисе {, &})

F = A (BC) = ABC (в базисе {, })

G = AB = AB = (A&B) = (A&B) (в базисе {, &})

G = AB = AB (в базисе {, })

Формулы H и J остаются без изменения.

г. Для посылок и заключения построить КНФ, ДНФ, СКНФ, СДНФ:

F = A (BC) = ABC (КНФ, ДНФ, СКНФ)

F=(A&B&C) (A&B&C) (A&B&C) (A&B&C) (A&B&C) (A&B&C) (A&B&C) (СДНФ, построенная с помощью таблицы истинности)

G = AB = AB (КНФ, ДНФ, СКНФ)

G = (A&B) (A&B) (A&B) (СДНФ, построенная с помощью таблицы истинности);

Формулы H и J остаются без изменения.

д. Доказать истинность заключения путём построения дерева доказательства

1.                       {AB} |­ AB                                                           {A} |­ A                                        

                  {AB, A→(BC), A}|­ AB             {AB, A→(BC), A}|­ A 

                                {AB, A→(BC), A}|­B                               

2.            {A→(BC)} |­ A→(BC)                         {A} |­ A                                        

             {AB, A→(BC), A}|­ AB               {AB, A→(BC), A}|­ A 

                                {AB, A→(BC), A}|­BC                               

3.            {AB, A→(BC), A}|­B              {AB, A→(BC), A}|­BC  

                                       {AB, A→(BC), A}|­C

Рисунок 6 – Граф построения дерева доказательства

е. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

Построим граф дедуктивного вывода.

A→(BC)           A                      AB

BC                  B

   C

Рисунок 7 – Граф дедуктивного вывода

ж. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты):

Приведем посылки и отрицание заключения к виду КНФ:

F= A (BC) = ABC

G=AB = AB

H=A

J=C

K = {AB,ABC,A,C}

Построим граф вывода пустой резольвенты:

                   A                 ¬AB                     ¬A¬BC               ¬C

                                                         ¬A¬B

                  ¬A

Рисунок 8 –Граф вывода пустой резольвенты


2 Логика предикатов

2.1 Выполнить задание по алгебре предикатов и исчислению предикатов:

F = (x (B(x))→x (A(x))) & y (A(x)→C(y))→ ¬ (¬C(y) & B(x))

а. Привести выражение к виду ПНФ

F = (x(B(x))→x(A(x)))&y(A(x)→C(y))→¬(¬C(y)&B(x))=¬(x (¬B(x)) x (A(x))) ¬(y (¬A(x) C(y))) C(y) ¬B(x) = x(B(x)) & x(¬A(x)) y(A(x) & ¬C(y)) C(y) ¬B(x) = x(B(x) & ¬A(x))  y(A(x) & ¬C(y))  C(y) ¬B(x) = [x = t] = t(B(t) & ¬A(t))  y(A(x) & ¬C(y)) C(y) ¬B(x) = =[y = n] = t(B(t) & ¬A(t))  n(A(x) & ¬C(n)) C(y) ¬B(x) = t n (B(t) & &¬A(t) A(x) & ¬C(n) C(y) ¬B(x)= t n ((B(t) C(y) ¬B(x)) & (¬A(t)  C(y) ¬B(x)) A(x) & ¬C(n)) = t n ((B(t) C(y) ¬B(x) A(x))& (¬A(t) C(y) ¬B(x) A(x))&(B(t)C(y)¬B(x)¬C(n))&(¬A(t)C(y) ¬B(x)¬C(n)))

Для приведения к виду ССФ воспользуемся алгоритмом Сколема, поэтому будут проведены следующие замены:

w = t, где t – предметная постояннаяn

k = n, где n – предметная постоянная

В результате получится следующее выражение:

F=tn((B(t)C(y) ¬B(x) A(x)) & (¬A(t) C(y)¬B(x)A(x)) &(B(t) C(y) ¬B(x) ¬C(n)) & (¬A(t) C(y) ¬B(x) ¬C(n))).

в. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

Представим нашу формулу в следующем виде:

{(x (B(x))→x (A(x))) & y (A(x)→C(y))}├ ¬(¬C(y) & B(x))

Построим граф дедуктивного вывода для доказательства выводимости заключения из данного множества посылок:

x (B(x))→x (A(x))      y (A(x)→C(y))

3

         B(t)→x (A(x))            A(a)→C(a)

         B(t)→A(a)                     B(t)→C(a)

                                             ¬B(x)  C(y)

                                             

                                          ¬ (¬C(y) & B(x))

Рисунок 9 – Граф дедуктивного вывода

г. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты)

F = (x (B(x))→x (A(x))) & y (A(x)→C(y)) = (x (¬B(x))  x (A(x)))&

&y(¬A(x) C(y)) = [x=n] = n ((¬B(n) A(n)) & y(¬A(x) C(y)) = =ny((¬B(n) A(n)) & (¬A(x) C(y))) = n((¬B(a) A(a)) & (¬A(x)

C(y))) = (¬B(a) A(a)) & (¬A(x) C(b))

¬F = ¬C(y) & B(x)

D={¬B(a) A(a); ¬A(x) C(b); ¬C(y); B(x)}

¬B(a) A(a)          B(x)

                A(a)            ¬A(x) C(b)

                              C(b)          ¬C(y)

Рисунок 10 –Граф вывода пустой резольвенты

2.2 Выполнить задание по алгебре предикатов и исчислению предикатов:

F = x (A(x)B(y))& z(C(z)A(x))y(C(z)B(y))

а. Привести выражение к виду ПНФ

F = x (A(x)B(y))& z(C(z)A(x))y(C(z)B(y))=

=¬(x (A(x) B(y))& z(C(z) A(x)))Vy(C(z) B(y))=

= x (A(x)VB(y))V ¬z(C(z)VA(x))Vy(C(z)VB(y)))=

=x(A(x)&B(y))V z (C(z)&A(x))Vy(C(z)VB(y))=  

=v(A(v)&B(y))V w (C(w)&A(x))Vt(C(z)VB(t))=

=vwt ((A(v)&B(y))V(C(w)&A(x))V(C(z)VB(t)))

F = vwt ((A(v)&B(y))V(C(w)&A(x))V(C(z)VB(t)))

б. Привести выражение к виду ССФ

Для приведения к виду ССФ воспользуемся алгоритмом Сколема, поэтому будут проведены следующие замены:

   v = a, где a – предметная постоянная

   w = b, где b – предметная постоянная

   t = c, где c – предметная постоянная

В результате получится следующее выражение:

            F =((A(a)&B(y))V(C(b)&A(x)VC(z)VB(c)))

в. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

Представим нашу формулу в следующем виде:

 {x (A(x)B(y)); z(C(z)A(x)) }|- y(C(z)B(y))

Построим граф дедуктивного вывода для доказательства выводимости заключения из данного множества посылок:

x (A(x)B(y))   z(C(z)A(x))

A(x) B(y)        C(z) A(x)

C(z) B(y)

y(C(z)B(y))

Рисунок 11 – Граф дедуктивного вывода

г. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты)

F = (x (A(x)B(y))& z(C(z)A(x))y(C(z)B(y))) =

= ¬(¬(x (¬A(x)VB(y))& z(¬C(z)VA(x)))Vy(¬C(z)VB(y))) =

= x (¬A(x)VB(y))& z(¬C(z)VA(x))& y(C(z)& ¬B(y)) =

=v (¬A(v)VB(y))& w(¬C(w)VA(x))Vt(C(z)&B(t))=

= vwt ((¬A(v)VB(y))&(¬C(w)VA(x))&C(z)& ¬B(t)

F = vwt ((¬A(v)VB(y))&(¬C(w)VA(x))&C(z)& ¬B(t))

Д = { ¬A(v)VB(y); ¬C(w)VA(x); C(z); ¬B(t) }

Построим граф вывода пустой резольвенты:

¬A(v)VB(y)       ¬C(w)VA(x)         C(z)           ¬B(t)

                                                                     zw

                                                  vx           A(x)

                                                             B(y)

                                                                               ty                                                                        

Рисунок 12 – Граф дедуктивного вывода 

3 Реляционная алгебра

3.1 Выполнить следующие бинарные операции и составить результирующие таблицы.

1) (r1r2)

2) (r1r2)

3) (r1 \ r2)

4) Выполнить заданную композицию операций

    Таблица 13- r1                                     Таблица 14 - r2

A1

A2

A5

A6

a3

b4

3

4

a1

b1

4

3

a2

b2

3

2

a3

b3

2

1

A1

A2

A5

A6

a1

b2

1

2

a2

b3

2

3

a1

b1

4

3

a2

b2

3

2

   1)Таблица 15 - (r1r2)                        2)Таблица 16 - (r1r2)

A1

A2

A5

A6

a3

b4

3

4

a1

b1

4

3

a2

b2

3

2

a3

b3

2

1

a1

b2

1

2

a2

b3

2

3

A1

A2

A5

A6

a1

b1

4

3

a2

b2

3

2

 

   3)Таблица 17 - (r1 \ r2)

A1

A2

A5

A6

a3

b4

3

4

a3

b3

2

1

r’ = ((r1>θ< r2, (r1 A6 = r2 A6)), d (r2 A1) = a2)

4) Таблица 18 - r1  r2

r1.A1

r1.A2

r1.A5

r1.A6

r2.A1

r2.A2

r2.A5

r2.A6

a3

b4

3

4

a1

b2

1

2

a3

b4

3

4

a2

b3

2

3

a3

b4

3

4

a1

b1

4

3

a3

b4

3

4

a2

b2

3

2

a1

b1

4

3

a1

b2

1

2

a1

b1

4

3

a2

b3

2

3

a1

b1

4

3

a1

b1

4

3

a1

b1

4

3

a2

b2

3

2

a2

b2

3

2

a1

b2

1

2

a2

b2

3

2

a2

b3

2

3

a2

b2

3

2

a1

b1

4

3

a2

b2

3

2

a2

b2

3

2

a3

b3

2

1

a1

b2

1

2

a3

b3

2

1

a2

b3

2

3

a3

b3

2

1

a1

b1

4

3

a3

b3

2

1

a2

b2

3

2

5)Таблица 19 - r1>θ< r2

r1.A1

r1.A2

r1.A5

r1.A6

r2.A1

r2.A2

r2.A5

r2.A6

a1

b1

4

3

a2

b3

2

3

a1

b1

4

3

a1

b1

4

3

a2

b2

3

2

a1

b2

1

2

a2

b2

3

2

a2

b2

3

2

6) Таблица 20 - r’ = ((r1>θ< r2, (r1 A6 = r2 A6)), d (r2 A1) = a2)

r1.A1

r1.A2

r1.A5

r1.A6

r2.A1

r2.A2

r2.A5

r2.A6

a1

b1

4

3

a2

b3

2

3

a2

b2

3

2

a2

b2

3

2

3.2 Выполнить следующие бинарные операции и составить результирующие таблицы.

1) (r1r2)

2) (r1r2)

3) (r1 \ r2)

4) Выполнить заданную композицию операций

А3

А4

А7

А8

c3

d4

3

4

c4

d1

4

1

c1

d2

1

2

c2

d3

2

3

          Таблица 21 -  r1                         Таблица 22 -  r2

А3

А4

А7

А8

с1

d2

1

2

с2

d3

2

3

с1

d1

2

1

с2

d2

1

4

A3

A4

A7

A8

c1

d2

1

2

c2

d3

2

3

     1) Таблица 23 - (r1r2)              2) Таблица 24 - (r1r2)

А3

А4

А7

А8

c1

d2

1

2

c2

d3

2

3

c1

d1

2

1

c2

d2

1

4

c3

d4

3

4

C4

d1

4

1

 

А3

А4

А7

А8

c1

d1

2

1

c2

d2

1

4

      3) Таблица 25 - (r1 \ r2)


4) Таблица 26 - r1><r2, d(r1.A7)< d(r2.A7)

r1A3

r1A4

r1A7

r1A8

r2A3

r2A4

r2A7

r2A8

c1

d2

1

2

c3

d4

3

4

c1

d2

1

2

c4

d1

4

1

c1

d2

1

2

c2

d3

2

3

с2 

d3

2

3

c3

d4

3

4

с2 

d3

2

3

c4

d1

4

1

с1 

d1

2

1

c3

d4

3

4

с1 

d1

2

1

c4

d1

4

1

с2 

d2

1

4

c3

d4

3

4

с2 

d2

1

4

c4

d1

4

1

с2 

d2

1

4

c2

d3

2

3

5) Таблица 27 -  ( r1.A3, r1.A4, r2A7,r2.A8)(r1><r2, d(r1.A7)< d(r2.A7))

r1A3

r2A4

r2A7

r2A8

c1

d2

3

4

c1

d2

4

1

c1

d2

2

3

с2 

d3

3

4

с2 

d3

4

1

с1 

d1

3

4

с1 

d1

4

1

с2 

d2

3

4

с2 

d2

4

1

с2 

d2

2

3

 Заключение

Вместе с развитием вычислительных систем, стремительно развиваются и другие отрасли цифрового мира. С каждым днем цифровые технологии все больше входят в нашу жизнь. И уже сложно представить себе окружающий мир без различных цифровых устройств, которые с каждой секундой появляются все новые и новые, и становятся все интеллектуальнее и интеллектуальнее.

Цель данной курсовой была достигнута.

В работе  решены все поставленные задачи, такие как, ознакомление с алгеброй высказываний и исчислением высказываний, рассмотрение алгебры предикатов и исчисления предикатов, изучение реляционной алгебры.

В ходе работы над курсовой работой была изучена научная и учебная литература по теме «Математическая логика и теория алгоритмов», так же были широко использованы материалы Интернет-ресурсов.


Список литературы

1. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. – 5-е изд., исправ. – М.: ФИЗМАЛИТ, 2010. – 256 с.

2. Пономарев В.Ф. Математическая логика. Часть 1. Логика высказываний. Логика предикатов. Учебное пособие – Калининград: КГТУ, 2001. – 140 с.

3. Пономарев В.Ф. Математическая логика. Часть 2. Логика реляционная. Логика нечеткая. Учебное пособие – Калининград: КГТУ, 2001. – 104 с.

4. Фролов И.С. Элементы математической логики: Учеб. Пособие для студентов математических специальностей. – Самара: Изд-во «Самарский университет», 2011. – 80 с.

 


 

А также другие работы, которые могут Вас заинтересовать

35249. Знаходження інтеграла за формулами прямокутників 24 KB
  Навчитися знаходити значення інтегралу за формулами прямокутників. Скласти програму.
35251. Обчислення інтегралу по формулі Сімпсона. Складання алгоритму 29 KB
  Тема. Обчислення інтегралу по формулі Сімпсона. Складання алгоритму. Мета. Навчитися обчислювати інтеграл по формулі Сімпсона; склаcти алгоритм.
35252. Основи конституційного права України 115.5 KB
  начно радикальніший проект Конституції України було опубліковано у вересні 1905 р. в першому числі часопису Української народної партії Самостійна Україна під назвою Основний закон Самостійної України спілки народу українського. Цей проект передбачав повну самостійність України, територія якої мала складатися з девяти земель.
35253. Знаходження власних чисел і векторів матриці по методу Крилова 81.5 KB
  Знайти одне з власних чисел і відповідний йому власний вектор матриці А по методу Крилова (використати результати лабороторної роботи № 18).
35254. Метод Ейлера вирішення задачі Коші 81 KB
  Мета. Навчитися будувати розв’язок задачі Коші по методу Ейлера. Скласти програму. Устаткування: папір формату А4, програмне забезпечення Borland С++, ПК
35255. Програмування циклів 152 KB
  code початок сегменту кода strt: початок модулю strt mov x@dt запис в регістр ах всіх адрес змінних mov dsx запис в регістр ds вмісту регістру ах mov cx len пересилка len в регістр cx xor xx обнуління регістру ах jcxz exit перехід на мітку exit если сх. jne m1 перехід на мітку m1 виконується якщо не еквівалентні ms[si] з нулем inc l збільшення вмісту регістру l на 1 m1: мітка m1 inc si збільшення si на 1 loop cycl організація...
35256. Лебеговское продолжение меры. Мера в R 470.5 KB
  Пусть задано множество X и – полукольцо его подмножеств, на котором задана мера m. Мера, заданная на кольце K называется продолжением меры m, если и для всех выполняется
35257. Метод прогонки розв’язання крайової задачі. Складання алгоритму 29.5 KB
  Мета. Навчитися використовувати метод прогонки розв’язання крайової задачі звичайного диференційного рівняння. Скласти алгоритм.