90569

Логика высказываний. Логика предикатов. Реляционная логика

Курсовая

Математика и математический анализ

Целью данной курсовой работы является знакомство с методами решений задач логики высказываний, логики предикатов и реляционной логики. Ознакомиться с алгеброй логики высказываний и исчислением высказываний, рассмотреть алгебру логики предикатов и исчисление предикатов, изучить реляционную алгебру.

Русский

2015-06-07

252.5 KB

5 чел.

ВПП

ВПП

У→П

ВПП

ВПП

У→П

У→П

a x

a x

by

У

У

КУРСОВАЯ РАБОТА

по дисциплине «Математическая логика и теория алгоритмов»

на тему: «Логика высказываний. Логика предикатов. Реляционная логика»


C
одержание

[1]
Введение

[2]
1 Логика высказываний

[3]
2 Логика предикатов

[4] Рисунок 12 – Граф дедуктивного вывода

[5] 3 Реляционная алгебра

[6] Заключение

[7]
Список литературы


Введение

В середине XX века развитие вычислительной техники привело к появлению логических электронных элементов, логических блоков и устройств вычислительной техники, что было связано с дополнительной разработкой таких областей логики, как проблемы логического синтеза, логическое проектирование и логического моделирования логических устройств и средств вычислительной техники. Эти проблемы изучает теория алгоритмов, основанная на математике, и математической логике в частности. Математическая логика нашла широкое применение в языках программирования. А в 80-х годах XX века начались исследования в области искусственного интеллекта на базе языков и систем логического программирования. Это направление является самым развивающимся и перспективным.

Поэтому целью данной курсовой работы является знакомство с методами решений задач логики высказываний, логики предикатов и реляционной логики.

Задачами, которые будут решаться в работе, являются:

- ознакомиться с алгеброй логики высказываний и исчислением высказываний,  

- рассмотреть алгебру логики предикатов и исчисление предикатов,

- изучить реляционную алгебру.

Для решения поставленных задач использовался теоретический материал научных работ  Лаврова И.А., Максимовой Л.Л. и Пономарева В.Ф.


1 Логика высказываний

1.1 Выполнить задания по алгебре высказываний и исчислению высказываний:

{(AB); (A→C); (B→D)}├ CD

Обозначим F=AB , G=A→C, H=B→D, J=CD

а. Построить таблицу истинности.

Рисунок 1 – Таблица истинности

A

B

C

D

AB

A→C

B→D

CD

F

G

H

J

0

0

0

0

0

1

1

0

0

0

0

1

0

1

1

1

0

0

1

0

0

1

1

1

0

0

1

1

0

1

1

1

0

1

0

0

1

1

0

0

0

1

0

1

1

1

1

1

0

1

1

0

1

1

0

1

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

0

1

0

0

0

1

1

0

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

В таблице истинности жирным шрифтом выделены столбцы с посылками, а жирным и курсивом выделено заключение. Смотря на те строчки, в которых истины все посылки одновременно видно, что заключение также истинно. Поэтому можно сделать вывод, что данное заключение выводимо из данного множества посылок.

б. Упростить посылки и заключения, т.е. привести их к базису {, &, } с минимальным числом операций:

F = A C = AC 

G = BD = BD

Формулы H и J остаются без изменения.

в. Привести посылки и заключение к базисам {, &} и {, }:

H=AvB=(A&B) (в базисе {, &})

H=AvB (в базисе {, })

F = = AC= AC = (A&C) = (A&C) (в базисе {, &})

F = AC = AC (в базисе {, })

G = BD = BD = (B&D) = (B&D) (в базисе {, &})

G = BD = BD (в базисе {, })

J=CvD=(C&D) (в базисе {, &})

J=CvD (в базисе {, })

г. Для посылок и заключения построить КНФ, ДНФ, СКНФ, СДНФ:

H = AvB  (КНФ, ДНФ, СКНФ)

H = (A&B) (A&B) (A&B) (СДНФ, построенная с помощью таблицы истинности);

F = AC = AC (КНФ, ДНФ, СКНФ)

F = (A&C) (A&C) (A&C) (СДНФ, построенная с помощью таблицы истинности);

G = BD = BD (КНФ, ДНФ, СКНФ)

G = (B&D) (B&D) (B&D) (СДНФ, построенная с помощью таблицы истинности);

J = CvD  (КНФ, ДНФ, СКНФ)

J = (C&D) (C&D) (C&D) (СДНФ, построенная с помощью таблицы истинности);

д. Доказать истинность заключения путём построения дерева доказательства

вп {AvC}├ AvC

     {AvC; DvC}├ AvC   вп {DvC}├ DvC

mp{AvC; DvC}├ AB→DC

    {A→C}├ AB→DC                                {AB}├ AB

вп {AB; A→C}├ AB→DC                 вп {AB; A→C}├ AB

                                                                mp {B→D}├ BC→CD

                                                                 вп {AB; B→D}├ BC→CD

    {AB; A→C}├ BC                       вп {AB; A→C; B→D}├ BC→CD

mp                                   {AB; AC; BD}├ CD

Рисунок 2 – Граф построения дерева доказательства

е. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

        AB                         A→C                     B→D

                      m.p.         AB→BC           BC→CD

                   BC

                                                     m.p.

                                                   CD

Рисунок 3 – Граф дедуктивного вывода

ж. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты):

Приведем посылки и отрицание заключения к виду КНФ:

H = AvB  

F = A→C = AC

G = B→D = BD

J == (CD)=( C)&( D)

K = { AvB, AC, BD, C, D }

Построим граф вывода пустой резольвенты:

     AC           C           AB           BD           D

          A

                      B

                                D

                                                                                           

Рисунок 4 – Граф вывода пустой резольвенты


1.2 Выполнить задания по алгебре высказываний и исчислению высказываний:

{A (BC);AB;A} |- C

Обозначим F= A (BC), G=AB, H=A и J=C.

а. Построить таблицу истинности.

Рисунок 5 – Таблица истинности

A

B

C

AB

BC

A(BC)

H

J

G

F

0

0

0

1

1

1

0

0

1

1

1

1

0

1

0

1

0

1

0

1

1

1

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

1

0

1

0

0

1

1

1

1

1

1

В таблице истинности жирным шрифтом выделены столбцы с посылками, а жирным и курсивом выделено заключение. Смотря на те строчки, в которых истины все посылки одновременно (в данном случае это последняя строчка, которая выделена жирной рамкой), видно, что заключение также истинно. Поэтому можно сделать вывод, что данное заключение выводимо из данного множества посылок.

б. Упростить посылки и заключения, т.е. привести их к базису {, &, } с минимальным числом операций:

F = A (BC) = A(BC) = ABC

G = AB = AB

Формулы H и J остаются без изменения.

в. Привести посылки и заключение к базисам {, &} и {, }:

F = A (BC) = ABC = (A&(BC)) = (A&B&C) = (A&B&C) (в базисе {, &})

F = A (BC) = ABC (в базисе {, })

G = AB = AB = (A&B) = (A&B) (в базисе {, &})

G = AB = AB (в базисе {, })

Формулы H и J остаются без изменения.

г. Для посылок и заключения построить КНФ, ДНФ, СКНФ, СДНФ:

F = A (BC) = ABC (КНФ, ДНФ, СКНФ)

F=(A&B&C) (A&B&C) (A&B&C) (A&B&C) (A&B&C) (A&B&C) (A&B&C) (СДНФ, построенная с помощью таблицы истинности)

G = AB = AB (КНФ, ДНФ, СКНФ)

G = (A&B) (A&B) (A&B) (СДНФ, построенная с помощью таблицы истинности);

Формулы H и J остаются без изменения.

д. Доказать истинность заключения путём построения дерева доказательства

1.                       {AB} |­ AB                                                           {A} |­ A                                        

                  {AB, A→(BC), A}|­ AB             {AB, A→(BC), A}|­ A 

                                {AB, A→(BC), A}|­B                               

2.            {A→(BC)} |­ A→(BC)                         {A} |­ A                                        

             {AB, A→(BC), A}|­ AB               {AB, A→(BC), A}|­ A 

                                {AB, A→(BC), A}|­BC                               

3.            {AB, A→(BC), A}|­B              {AB, A→(BC), A}|­BC  

                                       {AB, A→(BC), A}|­C

Рисунок 6 – Граф построения дерева доказательства

е. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

Построим граф дедуктивного вывода.

A→(BC)           A                      AB

BC                  B

   C

Рисунок 7 – Граф дедуктивного вывода

ж. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты):

Приведем посылки и отрицание заключения к виду КНФ:

F= A (BC) = ABC

G=AB = AB

H=A

J=C

K = {AB,ABC,A,C}

Построим граф вывода пустой резольвенты:

                   A                 ¬AB                     ¬A¬BC               ¬C

                                                         ¬A¬B

                  ¬A

Рисунок 8 –Граф вывода пустой резольвенты


2 Логика предикатов

2.1 Выполнить задание по алгебре предикатов и исчислению предикатов:

F = (x (B(x))→x (A(x))) & y (A(x)→C(y))→ ¬ (¬C(y) & B(x))

а. Привести выражение к виду ПНФ

F = (x(B(x))→x(A(x)))&y(A(x)→C(y))→¬(¬C(y)&B(x))=¬(x (¬B(x)) x (A(x))) ¬(y (¬A(x) C(y))) C(y) ¬B(x) = x(B(x)) & x(¬A(x)) y(A(x) & ¬C(y)) C(y) ¬B(x) = x(B(x) & ¬A(x))  y(A(x) & ¬C(y))  C(y) ¬B(x) = [x = t] = t(B(t) & ¬A(t))  y(A(x) & ¬C(y)) C(y) ¬B(x) = =[y = n] = t(B(t) & ¬A(t))  n(A(x) & ¬C(n)) C(y) ¬B(x) = t n (B(t) & &¬A(t) A(x) & ¬C(n) C(y) ¬B(x)= t n ((B(t) C(y) ¬B(x)) & (¬A(t)  C(y) ¬B(x)) A(x) & ¬C(n)) = t n ((B(t) C(y) ¬B(x) A(x))& (¬A(t) C(y) ¬B(x) A(x))&(B(t)C(y)¬B(x)¬C(n))&(¬A(t)C(y) ¬B(x)¬C(n)))

Для приведения к виду ССФ воспользуемся алгоритмом Сколема, поэтому будут проведены следующие замены:

w = t, где t – предметная постояннаяn

k = n, где n – предметная постоянная

В результате получится следующее выражение:

F=tn((B(t)C(y) ¬B(x) A(x)) & (¬A(t) C(y)¬B(x)A(x)) &(B(t) C(y) ¬B(x) ¬C(n)) & (¬A(t) C(y) ¬B(x) ¬C(n))).

в. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

Представим нашу формулу в следующем виде:

{(x (B(x))→x (A(x))) & y (A(x)→C(y))}├ ¬(¬C(y) & B(x))

Построим граф дедуктивного вывода для доказательства выводимости заключения из данного множества посылок:

x (B(x))→x (A(x))      y (A(x)→C(y))

3

         B(t)→x (A(x))            A(a)→C(a)

         B(t)→A(a)                     B(t)→C(a)

                                             ¬B(x)  C(y)

                                             

                                          ¬ (¬C(y) & B(x))

Рисунок 9 – Граф дедуктивного вывода

г. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты)

F = (x (B(x))→x (A(x))) & y (A(x)→C(y)) = (x (¬B(x))  x (A(x)))&

&y(¬A(x) C(y)) = [x=n] = n ((¬B(n) A(n)) & y(¬A(x) C(y)) = =ny((¬B(n) A(n)) & (¬A(x) C(y))) = n((¬B(a) A(a)) & (¬A(x)

C(y))) = (¬B(a) A(a)) & (¬A(x) C(b))

¬F = ¬C(y) & B(x)

D={¬B(a) A(a); ¬A(x) C(b); ¬C(y); B(x)}

¬B(a) A(a)          B(x)

                A(a)            ¬A(x) C(b)

                              C(b)          ¬C(y)

Рисунок 10 –Граф вывода пустой резольвенты

2.2 Выполнить задание по алгебре предикатов и исчислению предикатов:

F = x (A(x)B(y))& z(C(z)A(x))y(C(z)B(y))

а. Привести выражение к виду ПНФ

F = x (A(x)B(y))& z(C(z)A(x))y(C(z)B(y))=

=¬(x (A(x) B(y))& z(C(z) A(x)))Vy(C(z) B(y))=

= x (A(x)VB(y))V ¬z(C(z)VA(x))Vy(C(z)VB(y)))=

=x(A(x)&B(y))V z (C(z)&A(x))Vy(C(z)VB(y))=  

=v(A(v)&B(y))V w (C(w)&A(x))Vt(C(z)VB(t))=

=vwt ((A(v)&B(y))V(C(w)&A(x))V(C(z)VB(t)))

F = vwt ((A(v)&B(y))V(C(w)&A(x))V(C(z)VB(t)))

б. Привести выражение к виду ССФ

Для приведения к виду ССФ воспользуемся алгоритмом Сколема, поэтому будут проведены следующие замены:

   v = a, где a – предметная постоянная

   w = b, где b – предметная постоянная

   t = c, где c – предметная постоянная

В результате получится следующее выражение:

            F =((A(a)&B(y))V(C(b)&A(x)VC(z)VB(c)))

в. Доказать истинность заключения методом дедуктивного вывода (с построением графа дедуктивного вывода):

Представим нашу формулу в следующем виде:

 {x (A(x)B(y)); z(C(z)A(x)) }|- y(C(z)B(y))

Построим граф дедуктивного вывода для доказательства выводимости заключения из данного множества посылок:

x (A(x)B(y))   z(C(z)A(x))

A(x) B(y)        C(z) A(x)

C(z) B(y)

y(C(z)B(y))

Рисунок 11 – Граф дедуктивного вывода

г. Доказать истинность заключения методом резолюции (с построением графа вывода пустой резольвенты)

F = (x (A(x)B(y))& z(C(z)A(x))y(C(z)B(y))) =

= ¬(¬(x (¬A(x)VB(y))& z(¬C(z)VA(x)))Vy(¬C(z)VB(y))) =

= x (¬A(x)VB(y))& z(¬C(z)VA(x))& y(C(z)& ¬B(y)) =

=v (¬A(v)VB(y))& w(¬C(w)VA(x))Vt(C(z)&B(t))=

= vwt ((¬A(v)VB(y))&(¬C(w)VA(x))&C(z)& ¬B(t)

F = vwt ((¬A(v)VB(y))&(¬C(w)VA(x))&C(z)& ¬B(t))

Д = { ¬A(v)VB(y); ¬C(w)VA(x); C(z); ¬B(t) }

Построим граф вывода пустой резольвенты:

¬A(v)VB(y)       ¬C(w)VA(x)         C(z)           ¬B(t)

                                                                     zw

                                                  vx           A(x)

                                                             B(y)

                                                                               ty                                                                        

Рисунок 12 – Граф дедуктивного вывода 

3 Реляционная алгебра

3.1 Выполнить следующие бинарные операции и составить результирующие таблицы.

1) (r1r2)

2) (r1r2)

3) (r1 \ r2)

4) Выполнить заданную композицию операций

    Таблица 13- r1                                     Таблица 14 - r2

A1

A2

A5

A6

a3

b4

3

4

a1

b1

4

3

a2

b2

3

2

a3

b3

2

1

A1

A2

A5

A6

a1

b2

1

2

a2

b3

2

3

a1

b1

4

3

a2

b2

3

2

   1)Таблица 15 - (r1r2)                        2)Таблица 16 - (r1r2)

A1

A2

A5

A6

a3

b4

3

4

a1

b1

4

3

a2

b2

3

2

a3

b3

2

1

a1

b2

1

2

a2

b3

2

3

A1

A2

A5

A6

a1

b1

4

3

a2

b2

3

2

 

   3)Таблица 17 - (r1 \ r2)

A1

A2

A5

A6

a3

b4

3

4

a3

b3

2

1

r’ = ((r1>θ< r2, (r1 A6 = r2 A6)), d (r2 A1) = a2)

4) Таблица 18 - r1  r2

r1.A1

r1.A2

r1.A5

r1.A6

r2.A1

r2.A2

r2.A5

r2.A6

a3

b4

3

4

a1

b2

1

2

a3

b4

3

4

a2

b3

2

3

a3

b4

3

4

a1

b1

4

3

a3

b4

3

4

a2

b2

3

2

a1

b1

4

3

a1

b2

1

2

a1

b1

4

3

a2

b3

2

3

a1

b1

4

3

a1

b1

4

3

a1

b1

4

3

a2

b2

3

2

a2

b2

3

2

a1

b2

1

2

a2

b2

3

2

a2

b3

2

3

a2

b2

3

2

a1

b1

4

3

a2

b2

3

2

a2

b2

3

2

a3

b3

2

1

a1

b2

1

2

a3

b3

2

1

a2

b3

2

3

a3

b3

2

1

a1

b1

4

3

a3

b3

2

1

a2

b2

3

2

5)Таблица 19 - r1>θ< r2

r1.A1

r1.A2

r1.A5

r1.A6

r2.A1

r2.A2

r2.A5

r2.A6

a1

b1

4

3

a2

b3

2

3

a1

b1

4

3

a1

b1

4

3

a2

b2

3

2

a1

b2

1

2

a2

b2

3

2

a2

b2

3

2

6) Таблица 20 - r’ = ((r1>θ< r2, (r1 A6 = r2 A6)), d (r2 A1) = a2)

r1.A1

r1.A2

r1.A5

r1.A6

r2.A1

r2.A2

r2.A5

r2.A6

a1

b1

4

3

a2

b3

2

3

a2

b2

3

2

a2

b2

3

2

3.2 Выполнить следующие бинарные операции и составить результирующие таблицы.

1) (r1r2)

2) (r1r2)

3) (r1 \ r2)

4) Выполнить заданную композицию операций

А3

А4

А7

А8

c3

d4

3

4

c4

d1

4

1

c1

d2

1

2

c2

d3

2

3

          Таблица 21 -  r1                         Таблица 22 -  r2

А3

А4

А7

А8

с1

d2

1

2

с2

d3

2

3

с1

d1

2

1

с2

d2

1

4

A3

A4

A7

A8

c1

d2

1

2

c2

d3

2

3

     1) Таблица 23 - (r1r2)              2) Таблица 24 - (r1r2)

А3

А4

А7

А8

c1

d2

1

2

c2

d3

2

3

c1

d1

2

1

c2

d2

1

4

c3

d4

3

4

C4

d1

4

1

 

А3

А4

А7

А8

c1

d1

2

1

c2

d2

1

4

      3) Таблица 25 - (r1 \ r2)


4) Таблица 26 - r1><r2, d(r1.A7)< d(r2.A7)

r1A3

r1A4

r1A7

r1A8

r2A3

r2A4

r2A7

r2A8

c1

d2

1

2

c3

d4

3

4

c1

d2

1

2

c4

d1

4

1

c1

d2

1

2

c2

d3

2

3

с2 

d3

2

3

c3

d4

3

4

с2 

d3

2

3

c4

d1

4

1

с1 

d1

2

1

c3

d4

3

4

с1 

d1

2

1

c4

d1

4

1

с2 

d2

1

4

c3

d4

3

4

с2 

d2

1

4

c4

d1

4

1

с2 

d2

1

4

c2

d3

2

3

5) Таблица 27 -  ( r1.A3, r1.A4, r2A7,r2.A8)(r1><r2, d(r1.A7)< d(r2.A7))

r1A3

r2A4

r2A7

r2A8

c1

d2

3

4

c1

d2

4

1

c1

d2

2

3

с2 

d3

3

4

с2 

d3

4

1

с1 

d1

3

4

с1 

d1

4

1

с2 

d2

3

4

с2 

d2

4

1

с2 

d2

2

3

 Заключение

Вместе с развитием вычислительных систем, стремительно развиваются и другие отрасли цифрового мира. С каждым днем цифровые технологии все больше входят в нашу жизнь. И уже сложно представить себе окружающий мир без различных цифровых устройств, которые с каждой секундой появляются все новые и новые, и становятся все интеллектуальнее и интеллектуальнее.

Цель данной курсовой была достигнута.

В работе  решены все поставленные задачи, такие как, ознакомление с алгеброй высказываний и исчислением высказываний, рассмотрение алгебры предикатов и исчисления предикатов, изучение реляционной алгебры.

В ходе работы над курсовой работой была изучена научная и учебная литература по теме «Математическая логика и теория алгоритмов», так же были широко использованы материалы Интернет-ресурсов.


Список литературы

1. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. – 5-е изд., исправ. – М.: ФИЗМАЛИТ, 2010. – 256 с.

2. Пономарев В.Ф. Математическая логика. Часть 1. Логика высказываний. Логика предикатов. Учебное пособие – Калининград: КГТУ, 2001. – 140 с.

3. Пономарев В.Ф. Математическая логика. Часть 2. Логика реляционная. Логика нечеткая. Учебное пособие – Калининград: КГТУ, 2001. – 104 с.

4. Фролов И.С. Элементы математической логики: Учеб. Пособие для студентов математических специальностей. – Самара: Изд-во «Самарский университет», 2011. – 80 с.

 


 

А также другие работы, которые могут Вас заинтересовать

77226. Интеграция технологии DocLine с системой разработки документации Adobe FrameMaker 405.5 KB
  Цель данного проекта - разработать и реализовать плагин к Adobe FrameMaker, предоставляющий конечному пользователю удобный инструментарий среды FrameMaker для работы с технологией DocLine.
77227. Реализация подключения виртуальной машины Neko к http-серверу с помощью интерфейса FastCGI 61 KB
  Взаимодействие приложения и http-сервера реализуется при помощи FastCGI-модуля на стороне сервера и использующихся при написании приложения FastCGI-библиотек для различных языков программирования.
77228. Разработка приложения для платформы Google Аndroid 430.36 KB
  Цель курсовой работы – разработка приложения Underworld, многопользовательской игры, для платформы Google Android, предоставляющего удобный геймплей с использованием мощной функциональности, предоставляемой платформой.
77229. Параллельная реализация алгоритма ACO 69 KB
  В настоящее время биоинформатика также включает в себя теоретические методы и алгоритмы решения задач возникающих из анализа биологических данных.
77230. Интеграция мультимедиа решений с аппаратным ускорением для MID устройства 205 KB
  MID (mobile internet device) - это устройства, которые отвечают требованиям низкого энергопотребления, мобильности, а также предоставляющие обширные возможности для работы в сети. По сути MID - это компьютер по размеру не многим больше телефона...
77231. Создание среды разработки библиотек формул подсчета технико-экономических показателей теплоэлектростанций 443 KB
  В процессе создания новой системы для планирования расчёта и учёта технико-экономических показателей ТЭС возникла необходимость в модуле предоставляющем удобный пользовательский интерфейс и обладающим следующими возможностями: ввод перечня технико-экономических показателей ввод формул...
77232. Конечный мозг, его развитие, строение (отделы, полость, ее стенки, части, белое и серое вещество). Границы долей полушарий большого мозга. Артерии большого мозга 15.86 KB
  Границы долей полушарий большого мозга. Артерии большого мозга. Конечный мозг telencephlon является производным переднего мозгового пузыря и представлен двумя полушариями большого мозга hemispheri cerebrtes. Продольная щель мозга разделяет полушария между собой поперечная щель мозжечок от затылочных долей.
77233. Белое вещество полушарий большого мозга. Внутренняя капсула. Корково-ядерный пусть 16.34 KB
  Белое вещество полушарий большого мозга. Оно представлено многочисленными волокнами: Проекционные волокна представлены пучками афферентных и эфферентных волокон осуществляющих связи проекционных центров коры полушарий большого мозга с базальными ганглиями ядрами ствола головного мозга или ядрами спинного мозга. свода мозга fornix cerebri обеспечивают связь подкорковых центров обоняния c проекционным центром обоняния столбы свода тело свода спайка свода и бахромки гиппокампа Ассоциативные волокна соединяют различные участки коры в...
77234. Обонятельный мозг развивается из вентральной части конечного мозга и состоит из двух отделов: центрального и переферического 243.57 KB
  Рецептор переферические отростки биполярных клеток 1 нейроны в regio olfctori сллизистой полости носа. Центральные отростки биполярных клеток образуют nn. Аксоны митральных клеток проходят в составе обонятельного тракта и вблизи обонятельного треугольника распадаются на три пучка: Медиальный пучок Промежуточный пучок Латеральный пучок Через переднюю спайку мозга в обонятельный тракт противоположной стороны к митральным клеткам обонятельной луковицы. Образованы центральными отростками биполярных клеток расположенных в обонятельной области...