90882

Матрицы. Основные определения и правила действия

Лекция

Информатика, кибернетика и программирование

Матрица называется прямоугольной матрицей размером. Каждый элемент матрицы нумеруется двумя индексами. Первый индекс обозначает номер строки. Второй индекс обозначает номер столбца. Матрица, состоящая из одной строки, называется вектор - строкой. Матрица, состоящая из одного столбца, называется вектор – столбцом.

Русский

2015-06-12

262.94 KB

0 чел.

Лекция 1.  Матрицы. Основные определения и правила действия.

Определение 1. Матрица  это прямоугольная таблица элементов,  имеющая  строк и   столбцов                                                           

                                                                                                               (1)                              

Матрица (1) называется прямоугольной матрицей размером . Каждый элемент матрицы нумеруется двумя индексами. Первый индекс обозначает номер строки. Второй индекс обозначает номер столбца. Матрица, состоящая из одной строки, называется вектор - строкой.  Матрица, состоящая из одного столбца, называется вектор – столбцом.

Если число строк равно числу столбцов, то такую матрицу называют квадратной матрицей размером .

Пример 1. Матрица размером имеет 2 строки и 3 столбца

Матрица размером (32)  имеет  3 строки и  2 столбца .

Пример 2.  Элемент  расположен на пересечении второй строки и третьего столбца. Элемент расположен на пересечении третьей строки  и второго столбца.  Элемент расположен на пересечении-ой строки и -го столбца.

Определение 2.  Матрицы  обозначаются заглавными буквами. Например,  матрица , матрица . Две  - матрицы и равны,   если соответствующие элементы матриц равны. То есть  для всех. Между матрицами разных размеров равенства быть не может.

Элементы  алгебры матриц.

Суммой двух  матриц  А и В одинакового размера  называется -матрица , элементами которой  являются суммы соответствующих элементов матриц  А  и  В. Таким образом С=А+В если для всех.  

Пример 3.  Вычислить сумму матриц  

Решение.

 ;

Замечание. Матрицы разных размеров складывать нельзя.

Определение 3. Чтобы умножить число  на матрицу нужно каждый элемент матрицыумножить на число .     

Определение 4. Выражение , где -числа,  а   - матрицы  называют линейной комбинацией матриц  и .                                    

Правило 1.   Умножение  вектор строки на вектор – столбец.

Чтобы перемножить вектор- строку на вектор-столбец с одинаковым числом элементов нужно перемножить первый элемент строки на первый элемент столбца, второй элемент строки на второй элемент столбца ит.д.  и затем полученные произведения сложить.

Пример 4.  Пусть  заданы:  вектор- строка  и  вектор- столбецтребуется перемножить   А  на В.

РЕШЕНИЕ. =.

Правило 2.    Умножение  матрицы А размером ( ) на матрицу  В  размером ().

При  умножении матрицы  А  размером на матрицу В размером получается матрица  С размером . Причем элемент матрицы С  получается перемножением

ой строки  А  матрицы  и го столбца  В матрицы.

Замечание.  Правило 2 говорит нам о том, что если число столбцов первого сомножителя совпадает с числом строк второго сомножителя,  то такие матрицы перемножать можно .

Пример 5.  Перемножить   матрицы  А и В

                                     

РЕШЕНИЕ.  Условия перемножения  матриц выполнены.    Начнём  с вычисления  элемента  .  Нужно первую строку  А  матрицы  умножить на первый столбец  В матрицы:   =.  Чтобы вычислить элемент нужно первую строку  А  матрицы умножить на второй столбец  В  матрицы:=. 

Чтобы вычислить элемент нужно первую строку  А  матрицы умножить на третий  столбец  

матрицы В  матрицы: =.

Остальные элементы  С  матрицы находим аналогично.  Рекомендуем читателю  самостоятельно их вычислить.

Ответ: .

Пример 6. Умножение  столбца на строку. Перемножить.

Решение. Выписываем  правило. В результате должна получиться матрица

С  размером (сравните с результатом умножения строки на столбец ( см. пример 1.4))

Ответ:  .

Пример 6. Умножение матрицы на столбец.  Перемножить  

Решение.  Выписываем правило . Перемножать можно.  В результате получается матрица-столбец  размером  . Выписываем ответ

                                                 =

Квадратные матрицы.

Матрица,  у которой число строк совпадает с числом  столбцов ,называется

квадратной матрицей. Матрицу  размером называют  матрицей 2-го порядка.

Матрицу размером называют матрицей  3-го порядка и так далее.

Определители квадратных матриц.

Определение 5.  Определитель матрицы  обозначается или  .

Определение 6.  Определитель третьего порядка вычисляется разложением по первой строке   по формуле                     

                                                                      (2)    

Определение 7.  Определитель  2-го порядка  также вычисляется  разложением по первой строке по формуле

                                                                                                          (3)     

-называется минором  элемента . Минор - это определитель, который получается из определителя   вычёркиванием первой строки и го столбца.

Определение 8.  Минор  элемента  - это определитель, который получается из заданного определителя  вычёркиванием ой  строки и го столбца.  

 Пример 7.  Выписать  миноры всех элементов определителя 3-го порядка и вычислить определитель  

                                                        

Решение.   

Вычисляем миноры элементов первой строки.

 

О стальные миноры определителя вычисляются аналогично (проделайте это)

Вычисляем определитель по формуле  (2)

Замечание.  Определители любого  порядка  большего, чем третий  также можно вычислять

разложением по первой строке по правилу

                                

Здесь  -это алгебраические дополнения .Вычисляемые по формуле.

Единичные матрицы

Определение 9.  Матрицы вида

                                

называются единичными матрицами второго и третьего порядков соответственно.

Замечание.   .  Матрица не изменится ,  если её  умножить  на единичную  

матрицу (проверьте).

Обратные матрицы

Определение 10.  Матрица  называется матрицей обратной к матрице если

  1. Определитель  матрицы
  2.  

Правило вычисления обратной матрицы размером     даётся формулой     

                                                                                                          (4)                                                                              

                                                                                

                                                                                                                                                                                        

Здесь - это определитель  матрицы. -миноры матрицы .

Замечание.  Обратите внимание на порядок расположения миноров и знаки миноров в формуле обратной матрицы (4).

Формула вычисления обратной матрицы  

                                                                                                                                (5)

                                              

Замечание.  Формулы вычисления обратной матрицы порядков больших, чем три  смотрите в любом  курсе линейной алгебры.

Пример 8. Найти матрицу обратную  к  данной .

Решение.  По  определению 10  обратная матрица существует если .

В нашем случае определитель и все миноры найдены в примере 7. Подставляя найденные значения в формулу (4) получаем

                                                   

Сделаем проверку (см. определение 10  пункт 2)) найденного решения. Вычислим произведение

 

 

Аналогично проверяется равенство    . Обратная матрица найдена  верно.

Элементарные преобразования матриц

Для дальнейшего нам понадобятся  следующие преобразования матриц.

Определение 11.  Данные ниже преобразования матрицы называются элементарными преобразованиями матрицы

  1. Перемена местами двух строк.
  2. Умножение строки на отличное от нуля число.                                                                                                                                         
  3.   Прибавление к  элементам строки соответствующих элементов другой строки умноженной на число

Замечание.    Другие элементарные преобразования матрицы можно посмотреть в курсе линейной алгебры.

Эквивалентные матрицы.

Определение 12.   Две матрицы одинаковых размеров эквивалентны, если одну из них можно получить  из другой   элементарными преобразованиями.  

Определение ступенчатой матрицы

У   ступенчатой матрицы  в первом столбце все элементы начиная со второго равны нулю.  Во втором столбце все элементы,  начиная с  третьего равны нулю и т.д.

Пример 9.  Матрицы  

                   

являются ступенчатыми матрицами.

Приведение матрицы к ступенчатому виду элементарными  преобразованиями

Пример 10. Используя  элементарные  преобразования привести  матрицу    к ступенчатому виду

Решение.   1 шаг. Переставим местами первую и вторую строки данной матрицы   

                                   

2 шаг. Ко второй строке прибавим первую строку, умноженную на (-7)

 

                                

3 шаг.  К третьей строке прибавим первую строку, умноженную на (-5)

 

4 шаг.  К четвертой строке прибавим первую строку, умноженную на  (-2)

 

 

5 шаг. К третьей строке  прибавляем вторую, умноженную на (-24).  А к четвёртой строке прибавляем вторую, умноженную на  (-16).  В результате получаем    

 

6  шаг.  Умножаем третью строку  на   и получаем матрицу

7 шаг. Прибавляя к четвёртой строке третью  строку , умноженную на(-60) получаем ступенчатую матрицу  

 

Контрольные вопросы.

     I.Дайте определения:

     1) равенства матриц  ; 2) суммы матриц  ; 3) умножения числа  на матрицуА

     4) линейной комбинации матриц; 5) умножения матриц  .

     II. Cформулируйте правило  вычисления миноров квадратной матрицы. Вычислите миноры   

         матрицы размером

    III. Cформулируйте правила вычисления определителей  квадратных  матриц:

  1. второго порядка;  2) третьего порядка.

      IV. Дайте  определения  единичных  матриц   .

V. Cформулируйте определение обратной матрицы. Какие матрицы имеют обратные.

    Напишите формулу вычисления обратной матрицы третьего порядка.

VI. Дайте определения  элементарных  преобразований матриц.

VII. Дайте определение ступенчатой матрицы.

           


 

А также другие работы, которые могут Вас заинтересовать

35324. MS Excel. Структура таблиці. Типи даних. Консолідація да 325.5 KB
  Структура таблиці. Мета:Уміти налаштовувати параметри робочого аркуша вводити текстові числові дані і формули в таблицю редагувати дані форматувати дані і таблиці копіювати формули і таблиці. Яка сума буде на його рахунку через 10 років Відобразити щорічні зміни на рахунку у вигляді таблиці рис. Форматування таблиці.
35325. Побудова діаграм в MS Excel 443 KB
  Запустіть Майстра діаграм і виконайте перший крок: задайте тип і вигляд діаграми. Задайте параметри діаграми. Сформатуйте область діаграми. Активізуйте контекстне меню області діаграми.
35326. Тема: MS ccess. Створення бази даних у вигляді декількох таблиць. 262 KB
  Створення бази даних у вигляді декількох таблиць. План Основні поняття про бази даних. Задача Успішність Створити базу даних з трьох таблиць: Оцінки рис. Оцінки Номер Прізвище Ім'я Мат Інф Фіз Літ Мова 1 Артист Іван 5 5 4 3 3 2 Мицик Орест 3 3 4 4 3 3 Бодак Марта 5 5 5 5 5 4 Пелех Іра 4 4 5 5 5 5 Іваник Микола 5 5 5 4 4 6 Боженко Роман 5 5 4 4 4 7 Ковальчук Лілія 4 4 4 4 4 8 Захарко Оксана 3 3 3 3 3 9 Матвішін Василь 5 5 4 5 4 10 Атарова Леся 3 2 3 3 4 Адреса Номер Прізвище Ім'я Адреса 1 Артист Іван Леніна 32 1 2 Мицик Орест Маликіна 36 2...
35327. Тема: MS PowerPoint. Створення презентацій. 1.45 MB
  Контрольні запитання Яке призначення програми MS PowerPoint Що таке презентація Що може містити слайд Якими способами можна створити слайд Які є режими роботи зі слайдами Як редагують слайд Що таке маркований список Що таке слайд Що таке режим слайдів звичайний 10. Як вставити новий слайд 11. 3 яких елементів може складатися слайд Яке призначення режиму показу слайдів Як вставити звук і відеокліп у слайд Як підвищити рівень елемента списку Для чого використовують анімаційні ефекти...
35328. Монтаж электрооборудования цеха редукторов станкостроительного завода 731.5 KB
  Электромонтажные работы первой стадии предусматривает производство всех подготовительных и заготовительных работ. На этой стадии внутри сооружений и зданий выполняют монтаж опорных конструкций для установки электрооборудования
35329. РАБОТА С БАЗАМИ ДАННЫХ В MICROSOFT EXCEL 860.3 KB
  Призначення: оволодіння засобами виконання основних операцій з дисками дозволить раціонально використовувати диски у повсякденній роботі а в деяких випадках врятувати дані на пошкодженому диску чи просто зробити його знову придатним для роботи. Ход работи Виконати перевірку жорсткого диска С: Пуск – Программы – Стандартные – Служебные – Проверка диска . Виконайте стандартну перевірку диска С одержте звіт про виконання. Виконайте повну перевірку диска А одержте звіт про виконання.
35330. Тема: Використання редактора реєстру. 309 KB
  Практична робота №14 Тема: Використання редактора реєстру. Мета: Ознайомитися з редактором реєстру Windows XP навчитися здійснювати пошук інформації в реєстрі а також здійснювати зміни в реєстрі. Індивідуальне завдання Використання редактора реєстру Вправа 1. Дослідження реєстру Зараз ви використаєте Редактор реєстру Regіstry Edіtor для перегляду інформації що втримується в реєстрі.
35331. Основні прийоми роботи в середовищі Windows 8.35 MB
  Призначення: ознайомитися з основними об'єктами робочого столу папками Мій комп'ютер Мережеве оточення Корзина і панеллю задач їх зовнішнім виглядом і змістом навчитися узнавати і змінювати властивості об'єктів Windows. Визначити які диски є на вашому комп'ютері. Взнати інформацією яких комп'ютерів ви можете скористатися при роботі на вашому комп'ютері. В даному випадку не можливо скористатися інформацією інших комп’ютерів.