90935

Моделирование структуры дискретной системы

Лабораторная работа

Математика и математический анализ

Используя электронные таблицы Excel (функция СЛУЧМЕЖДУ, клавиша F9 отменяет изменение значения) сформировать случайным образом множество связей между 4 элементами системы, для чего построить при помощи датчика случайных чисел матрицу смежности вершин соответствующего ориентированного графа.

Русский

2015-07-10

53.5 KB

12 чел.

Лабораторная работа №2

Моделирование структуры дискретной системы.

2.1. Учебные цели занятия:

изучение и практическое освоение основных понятий теории систем;

изучение методов описания структуры системы;

экспериментальная (на компьютере) проверка теоретических положений.

22. Некоторые теоретические сведения.

Системой называется рассматриваемая как единое целое совокупность элементов, связей между элементами и взаимодействий с внешней средой. Структура – совокупность двух множеств: множества элементов V={vi, i=1,…n} и множества связей между элементами E={eij}. Математической моделью структуры является граф.

Граф называется конечным, если конечными являются множества его вершин и дуг. Граф называется ориентированным, если дуга eij имеет направление (например, из vi в vj), если ориентация не указана, то дуга называется ребром.  Ориентированный граф называют орграфом. Дуга (ребро) называется петлёй, если оно начинается и заканчивается в одной вершине.

Матрица инциденций орграфа R=[rij] – прямоугольная матрица размерности mn, строки которой соответствуют вершинам, а столбцы – дугам графа. При этом rij =1, если дуга uj выходит их вершины vi;  rij = 1, если дуга uj заходит в вершину vi и rij=0 в остальных случаях. Если граф является неориентированным, то элементами матрицы будут 0 и 1. Строки матрицы инциденций называются векторами инциденций.

Матрица смежности вершин орграфа A=[aij]: aij=1, если есть дуга, ведущее из vi в vj, и aij=0 в противном случае. Очевидно, если граф неориентированный, тогда aij=aji, т.е. матрица смежностей для неориентированного графа – симметрична. Для орграфа в общем случае aijaji. Матрица смежности дуг орграфа В=[bij]: bij=1, если есть дуга ui, непосредственно предшествующая дуге uj, и bij=0 в противном случае.

Степень вершины P(vi) - это количество инцидентных ей рёбер. Вершина степени 1 называется висячей. Вершина степени 0 называется изолированной. Полустепень захода вершины орграфа (количество входящих дуг) P+ (vi) равна сумме элементов i–го столбца матрицы смежности вершин. Полустепень исхода вершины орграфа (количество выходящих дуг) P-(vi) равна сумме элементов i–ой строки матрицы смежности вершин. Путь из вершины v1 в вершину vk – это последовательность смежных рёбер (v1,v2),(v2,v3), …,(vk-1,vk), где v1, v2,…, vkразличные вершины, кроме, может быть, v1=vk. Граф называется связным, если между любыми двумя его вершинами существует путь.

2.3. Порядок выполнения работы

  1.  Используя электронные таблицы Excel (функция СЛУЧМЕЖДУ, клавиша F9 отменяет изменение значения) сформировать случайным образом множество связей между 4 элементами системы, для чего построить при помощи датчика случайных чисел матрицу смежности вершин соответствующего ориентированного графа.
  2.  Построить графически структуру полученной системы в виде орграфа. Построить матрицу смежности дуг и матрицу инциденций полученного ориентированного графа (для чего предварительно пронумеровать дуги).
  3.  На основе построенных матриц исследовать структуру полученной системы в соответствии с вариантом. Проверить результаты исследования графически.
  4.  Подготовить отчет.

2.4. Задания для лабораторной работы и самостоятельной работы студентов.

варианта

Задание

  1.  

а) определить вершину, которой инцидентно минимальное количество дуг графа;

б) определить все изолированные вершины графа.

  1.  

а) определить, является ли данный граф связным;

б) определить все вершины, смежные вершине 1.

  1.  

а) определить, образуют ли цикл вершины 1,2,3;

б) определить все изолированные вершины графа.

  1.  

а) определить вершину, в которую направлено минимальное количество дуг;

б) определить все висячие вершины графа.

  1.  

а) определить, в какие вершины направлены дуги из вершины 2;

б) определить вершину, которой инцидентно максимальное количество дуг графа.

  1.  

а) определить все пары вершин, связанных между собой прямыми и обратными дугами.

б) определить вершину, которой инцидентно минимальное количество дуг графа.

  1.  

а) определить вершину, из которой направлено минимальное количество дуг,

б) определить все вершины, имеющие петли.

  1.  

а) определить вершину, в которую направлено максимальное количество дуг;

б) определить количество дуг графа.

  1.  

а) определить вершину, из которой направлено максимальное количество дуг;

б) определить сумму степеней вершин графа.

  1.  

а) определить, является ли построенный граф связным;

б) определить все вершины, достижимые из вершины 3 по двум  дугам.

  1.  

а) определить, из каких вершин направлены ребра в вершину 4;

б) определить вершину, в которую не входит ни одна дуга.

  1.  

а) определить, образуют ли цикл вершины 1,3,4;

б) определить вершину, из которой не выходит ни одна дуга.

  1.  

а) определить полустепень захода заданной вершины

орграфа;

б) определить являются ли две заданные дуги смежными.

  1.  

а) определить полустепень исхода вершины 3 орграфа;

б) определить являются ли две вершины 3 и 4 смежными.

  1.  

а) определить полустепень исхода вершины 2 орграфа;

б) определить являются ли две вершины 3 и 4 смежными.

1.5. Контрольные вопросы

  1.  Что такое система, подсистема, элемент, связь?
  2.  Что такое внешняя среда, входы и выходы системы?
  3.  Что такое состояние элемента (системы) и процесс?
  4.  Как связаны между собой потребность и цель?
  5.  Как классифицируются системы?
  6.  Что такое структура системы?
  7.  Почему структура является статической моделью системы?
  8.  Какие основные матричные способы задания графов?


 

А также другие работы, которые могут Вас заинтересовать

23714. Запись, чтение и составление выражений 40.5 KB
  Цели урока: формировать представление о математических выражениях как о словах математического языка повторить понятия числового и буквенного выражения учить делать перевод текстов с русского языка на математический и наоборот повторить и закрепить приёмы устных вычислений нумерацию натуральных чисел смысл сложения и вычитания взаимосвязь между ними сложение и вычитание многозначных чисел решение задач понятие периметра многоугольника развивать внимание логическое мышление способности к обобщению исследовательские умения...
23715. Запись, чтение и составление выражений 58 KB
  Запишите выражения для ответа на вопрос задачи: а Площадь прямоугольника с см2 а ширина – 7см. – Почему в классе разные ответы а часть ребят совсем не справилась с заданием Что необходимо знать что бы с заданием справились все Для решения первой задачи надо знать как найти ширину прямоугольника по его площади и длине а для решения второй задачи формулу площади прямоугольника. – Поднимите руку те кто не знает формулу нахождения площади прямоугольника К решению этой задачи учащиеся были подготовлены на этапе актуализации по этому...
23716. ХУДОЖНЄ ВИХОВАННЯ В УМОВАХ НОВОЇ ЕСТЕТИЧНОЇ СОЦІАЛЬНОЇ РЕАЛЬНОСТІ В УКРАЇНІ 71 KB
  На основі аналізу феномена „масова культура” з’ясувати проблему його впливу на поведінку людей та необхідність прищеплення естетичного смаку особистості...
23717. Значение выражения, урок рефлексии 59 KB
  Повторить и закрепить понятия буквенного и числового выражения взаимосвязь между арифметическими действиями решение уравнений на сложение и вычитание алгоритмы сложения и вычитания многозначных чисел. Здравствуйте ребята Чему мы учились на прошлых уроках Составлять читать и записывать математические выражения. В каком виде мы записывали ответ В виде числового или буквенного выражения.
23718. Значение выражения 66 KB
  – Какие выражения ещё мы учились составлять и записывать Буквенные выражения. – Сегодня на уроке мы продолжим работать с буквенными выражениями. – Как вы думаете что можно делать с буквенными выражениями Находить их значения.
23719. Метод весов 52.5 KB
  – Решите уравнение: а методом проб и ошибок; б методом перебора: 3. Решите уравнение: 3а 33 = 8а 8 3. – Чем отличается это уравнение от уравнений которые решали раньше В этом уравнении переменная стоит в обеих частях уравнения. – Как же быть Надо найти способ который позволит решить такое уравнение.
23720. Метод перебора 76.5 KB
  – Установите закономерность и продолжите ряд на три числа. – Что вы можете сказать о множителях в произведении Они являются делителями числа 252 252 делится на x и на y. x – 1y 6 = 252 – Что вы можете сказать о втором уравнении Множители во втором уравнении являются делителями числа 252. – Что вы можете сказать о корнях первого и второго уравнения Одни и те же числа.
23721. Метод весов 45.5 KB
  – Что интересного вы можете рассказать о полученном ряде чисел – Назовите самое большое число из данного ряда. 109 – Назовите самое маленькое число из этого ряда. – Замените число 25 суммой разрядных слагаемых разными способами. Вспомните как была построена математическая модель 10х y = xy 52 для задачи 5: Задумано двузначное число которое на 52 больше суммы своих цифр.
23722. Метод проб и ошибок 61 KB
  – Какие уравнения мы учились решать на прошлом уроке Уравнения вида x аx = b – Что мы использовали при решении уравнений Свойства чисел. – Какие уравнения мы ещё получали при переводе текста задачи на математический язык Уравнения вида: x x а = b. – Подберите корень уравнения: – Объясните способ решения который вы использовали. – А есть ли у этого уравнения другие корни 3.