9125

Затухающие и вынужденные колебания

Контрольная

Физика

Тема: Затухающие и вынужденные колебания Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания. Решение дифференциального уравнения затухающих колебаний. Амплитуда и ...

Русский

2013-02-24

112 KB

51 чел.

Тема: Затухающие и вынужденные колебания

  1.  Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний.

Коэффициент затухания.

 

 

  1.  Решение дифференциального уравнения затухающих колебаний.

Амплитуда

и частота затухающих колебаний.

  1.  Логарифмический декремент затухания.

Добротность колебательной системы.

Апериодический процесс.

  1.  Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания.

Раньше мы рассмотрели собственные колебания консервативных (идеальных) колебательных систем. В таких системах возникают гармонические колебания, которые характеризуются постоянством амплитуды и периода, и описываются следующим дифференциальным уравнением

. (1)

В реальных же колебательных системах всегда присутствуют силы, препятствующие колебаниям (силы сопротивления). Например, в механических системах всегда присутствует сила трения. В этом случае энергия колебаний постепенно расходуется на работу против силы трения. Поэтому энергия и амплитуда колебаний будет уменьшаться, и колебания будут затухать. В электрическом колебательном контуре энергия колебаний расходуется на нагревание проводников. То есть реальные колебательные системы являются диссипативными.

Собственные колебания в реальных системах являются затухающими.

Чтобы получить уравнение колебаний в реальной системе необходимо учесть силу сопротивления. Во многих случаях можно считать, что при небольших скоростях изменения величины S сила сопротивления пропорциональна скорости

, (2)

где r – коэффициент сопротивления (коэффициент трения при механических колебаниях), а знак минус показывает, что сила сопротивления противоположна скорости.

Подставив силу сопротивления в формулу (2), получим дифференциальное уравнение, описывающее колебания в реальной системе

. (3)

Перенесем все члены в левую часть, разделим на величину m и введем следующие обозначения

(4), и  (5).

Как и прежде величина ω0 определяет частоту собственных колебаний идеальной системы. Величина же β характеризует диссипацию энергии в системе и называется коэффициентом затухания. Из формулы (5) видно, что коэффициент затухания можно уменьшить, увеличив значение величины m при неизменном значении величины r.

С учетом введенных обозначений получим дифференциальное уравнение затухающих колебаний

. (4)

  1.  Решение дифференциального уравнения затухающих колебаний. Амплитуда и частота затухающих колебаний.

Можно показать, что при небольших значениях коэффициента затухания общее решение дифференциального уравнения затухающих колебаний имеет следующий вид

, (5)

где величина, стоящая перед синусом называется амплитудой затухающих колебаний

. (6)

Частота ω затухающих колебаний определяется следующим выражением

. (7)

Из приведенной формулы (7) видно, что частота собственных колебаний реальной колебательной системы меньше частоты колебаний идеальной системы.

График уравнения затухающих колебаний приведен на рисунке. Сплошной линией показан график смещения S(t), а штрихпунктирной линией показано изменение амплитуды затухающих колебаний.

Следует иметь в виду, что в результате затухания не все значения величин повторяются. Поэтому, строго говоря, понятия частоты и периода не применимы к затухающим колебаниям. В этом случае под периодом понимают промежуток времени, по прошествии которого колеблющиеся величины принимают максимальные (или минимальные) значения.

  1.  Логарифмический декремент затухания. Добротность колебательной системы. Апериодический процесс.

Для количественной характеристики быстроты убывания амплитуды затухающих колебаний вводится логарифмический декремент затухания δ.

Логарифмическим декрементом затухания называется натуральный логарифм отношения амплитуд в моменты времени t и t+T, т.е. отличающихся на период.

По определению логарифмический декремент определяется следующей формулой

. (8)

Если вместо амплитуд в формуле (8) подставить формулу (6), то получим формулу, связывающую логарифмический декремент с коэффициентом затухания и периодом

. (9)

Промежуток времени τ, в течение которого амплитуда колебаний уменьшается в е раз, называется временем релаксации  . С учетом этого получим, что , где N – это число колебаний, в течение которых амплитуда уменьшается в е раз. То есть логарифмический декремент затухания обратно пропорционален числу колебаний, в течение которых амплитуда уменьшается в е раз. Если, например, β=0,001, то это означает, что через 100 колебаний амплитуда уменьшится в е раз.

Добротностью колебательной системы называется безразмерная величина θ, равная произведению числа 2π и отношения энергии W(t) колебаний в произвольный момент времени и убыли этой энергии за один период затухающих колебаний

. (10)

Так как энергия пропорциональна квадрату амплитуды колебаний, то заменив энергии в формуле (10) квадратами амплитуд, определяемых формулой (6), получим

. (11)

При незначительных затуханиях ,  и . С учетом этого для добротности можно записать

. (12)

Приведенные здесь соотношения можно записать для различных колебательных систем. Для этого достаточно величины S, m, k и r заменить соответствующими величинами, характеризующими конкретные колебания. Например, для электромагнитных колебаний Sq, mL, k→1/C и rR.

Апериодический процесс.

При большом значении коэффициента затухания β происходит не только быстрое уменьшение амплитуды, но и увеличение периода колебаний. Из формулы (7) видно, что при циклическая частота колебаний обращается в нуль (Т = ∞), т.е. колебания не возникают. Это означает, что при большом сопротивлении вся энергия, сообщенная системе, к моменту возвращения ее в положение равновесия расходуется на работу против силы сопротивления. Система, выведенная из положения равновесия, возвращается в положение равновесия без запаса энергии. Говорят, что процесс протекает апериодически. При этом время установления равновесия определяется значением сопротивления.

Читателю предлагается самому посмотреть как влияют значения величин r, m, Т1 и φ0 на характер колебаний реальной колебательной системы.

Для этого необходимо навести курсор на диаграмму и двойным «клик» активизировать ее. Затем в открывшемся окне изменять значения величин, приведенных в цветных ячейках. По окончанию работы с графиком таблицу EXEL закрыть с сохранением или без сохранения данных.

Вопросы для самопроверки:

  1.  Вывести уравнение затухающих колебаний. Какой вид имеет график уравнения затухающих колебаний?
  2.  Какой формулой определяется коэффициент затухания? Как можно уменьшить коэффициент затухания?
  3.  Записать закон изменения амплитуды затухающих колебаний.
  4.  Какой формулой определяется частота собственных колебаний реальной колебательной системы?
  5.  Что характеризует логарифмический декремент затухания?
  6.  Что понимают под добротностью колебательной системы?


 

А также другие работы, которые могут Вас заинтересовать

74548. Linux 19.3 KB
  История Linux началась в 1991 году когда студент Хельсинского университета Линус Торвальдс выпустил первый релиз этой операционной системы. Именно идея расширить возможности этой операционной системы и послужила основным мотивом разработки Linux. Хотя идея новой операционной системы и первые ее релизы почти полностью принадлежат одному человеку дальнейшее развитие Linux происходило и происходит благодаря участию в этом проекте десятков тысяч программистов всего мира. Однако эта команда разработчиков Linux не имеет ни штабквартиры ни...
74549. BSD (Berkeley Software Distribution) 15.56 KB
  BSDLite были созданы несколько операционных систем с открытыми исходными кодами. Вот что такое собственно операционная система BSD: Ядро BSD отвечающее за планировку процессов управление памятью поддержку многопроцессорных систем SMP работу с устройствами и так далее. В отличие от Linux существует несколько ядер BSD отличающихся возможностями. Библиотека C в BSD основывается на коде из Беркли а не из Проекта GNU.
74551. Пакетный файл 20.46 KB
  После запуска пакетного файла программаинтерпретатор как правило COMMND. Командный интерпретатор в MSDOS а следом и в семействе Windows 9x имеет название COMMND.BT который автоматически исполняется COMMND.exe который частично совместим с COMMND.
74553. Теорія двоїстості 764 KB
  Економічну інтерпретацію кожної з пари таких задач розглянемо на прикладі виробничої задачі п.6 є двоїстою або спряженою до задачі 5. Як у прямій так і у двоїстій задачі використовують один набір початкових даних. Крім того вектор обмежень початкової задачі стає вектором коефіцієнтів цільової функції двоїстої задачі і навпаки а рядки матриці А матриці коефіцієнтів при змінних з обмежень прямої задачі стають стовпцями матриці коефіцієнтів при змінних в обмеженнях двоїстої задачі.
74554. Аналіз лінійних моделей оптимізаційних задач 408.5 KB
  Оцінка рентабельності продукції яка виробляється і нової продукції. Використання двоїстих оцінок уможливлює визначення рентабельності кожного виду продукції яка виробляється підприємством. Водночас можна оцінити інтервали можливої зміни цін одиниці кожного виду продукції що дуже важливо за ринкових умов. Це дає змогу перевірити
74555. Аналіз коефіцієнтів лінійних моделей 196 KB
  1 Аналіз коефіцієнтів цільової функції Під впливом різних обставин ціна виробленої на підприємстві одиниці продукції може змінюватися збільшуватися чи зменшуватися. Нехай змінюється ціна на одиницю продукції виду С тобто початкове значення 3 ум. подамо як де величина зміни ціни одиниці продукції виду С. Отже ціна одиниці продукції виду С може збільшуватися чи зменшуватися на 1ум.
74556. КОНЦЕПТУАЛЬНІ АСПЕКТИ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ ЕКОНОМІКИ 262.5 KB
  Сутність методології математичного моделювання полягає в заміні досліджуваного обєкта його образом математичною моделлю і подальшим вивченням дослідженням моделі на підставі аналітичних методів та обчислювальнологічних алгоритмів які реалізуються за допомогою компютерних програм. Другий етап вибір чи розроблення алгоритму для реалізації моделі на компютері. Зумовленість моделі обєктом. Як модель для обєкта так і обєкт для даної моделі семантично та інтерпретаційно багатозначні: обєкт описується не однією а...