9125

Затухающие и вынужденные колебания

Контрольная

Физика

Тема: Затухающие и вынужденные колебания Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания. Решение дифференциального уравнения затухающих колебаний. Амплитуда и ...

Русский

2013-02-24

112 KB

51 чел.

Тема: Затухающие и вынужденные колебания

  1.  Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний.

Коэффициент затухания.

 

 

  1.  Решение дифференциального уравнения затухающих колебаний.

Амплитуда

и частота затухающих колебаний.

  1.  Логарифмический декремент затухания.

Добротность колебательной системы.

Апериодический процесс.

  1.  Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания.

Раньше мы рассмотрели собственные колебания консервативных (идеальных) колебательных систем. В таких системах возникают гармонические колебания, которые характеризуются постоянством амплитуды и периода, и описываются следующим дифференциальным уравнением

. (1)

В реальных же колебательных системах всегда присутствуют силы, препятствующие колебаниям (силы сопротивления). Например, в механических системах всегда присутствует сила трения. В этом случае энергия колебаний постепенно расходуется на работу против силы трения. Поэтому энергия и амплитуда колебаний будет уменьшаться, и колебания будут затухать. В электрическом колебательном контуре энергия колебаний расходуется на нагревание проводников. То есть реальные колебательные системы являются диссипативными.

Собственные колебания в реальных системах являются затухающими.

Чтобы получить уравнение колебаний в реальной системе необходимо учесть силу сопротивления. Во многих случаях можно считать, что при небольших скоростях изменения величины S сила сопротивления пропорциональна скорости

, (2)

где r – коэффициент сопротивления (коэффициент трения при механических колебаниях), а знак минус показывает, что сила сопротивления противоположна скорости.

Подставив силу сопротивления в формулу (2), получим дифференциальное уравнение, описывающее колебания в реальной системе

. (3)

Перенесем все члены в левую часть, разделим на величину m и введем следующие обозначения

(4), и  (5).

Как и прежде величина ω0 определяет частоту собственных колебаний идеальной системы. Величина же β характеризует диссипацию энергии в системе и называется коэффициентом затухания. Из формулы (5) видно, что коэффициент затухания можно уменьшить, увеличив значение величины m при неизменном значении величины r.

С учетом введенных обозначений получим дифференциальное уравнение затухающих колебаний

. (4)

  1.  Решение дифференциального уравнения затухающих колебаний. Амплитуда и частота затухающих колебаний.

Можно показать, что при небольших значениях коэффициента затухания общее решение дифференциального уравнения затухающих колебаний имеет следующий вид

, (5)

где величина, стоящая перед синусом называется амплитудой затухающих колебаний

. (6)

Частота ω затухающих колебаний определяется следующим выражением

. (7)

Из приведенной формулы (7) видно, что частота собственных колебаний реальной колебательной системы меньше частоты колебаний идеальной системы.

График уравнения затухающих колебаний приведен на рисунке. Сплошной линией показан график смещения S(t), а штрихпунктирной линией показано изменение амплитуды затухающих колебаний.

Следует иметь в виду, что в результате затухания не все значения величин повторяются. Поэтому, строго говоря, понятия частоты и периода не применимы к затухающим колебаниям. В этом случае под периодом понимают промежуток времени, по прошествии которого колеблющиеся величины принимают максимальные (или минимальные) значения.

  1.  Логарифмический декремент затухания. Добротность колебательной системы. Апериодический процесс.

Для количественной характеристики быстроты убывания амплитуды затухающих колебаний вводится логарифмический декремент затухания δ.

Логарифмическим декрементом затухания называется натуральный логарифм отношения амплитуд в моменты времени t и t+T, т.е. отличающихся на период.

По определению логарифмический декремент определяется следующей формулой

. (8)

Если вместо амплитуд в формуле (8) подставить формулу (6), то получим формулу, связывающую логарифмический декремент с коэффициентом затухания и периодом

. (9)

Промежуток времени τ, в течение которого амплитуда колебаний уменьшается в е раз, называется временем релаксации  . С учетом этого получим, что , где N – это число колебаний, в течение которых амплитуда уменьшается в е раз. То есть логарифмический декремент затухания обратно пропорционален числу колебаний, в течение которых амплитуда уменьшается в е раз. Если, например, β=0,001, то это означает, что через 100 колебаний амплитуда уменьшится в е раз.

Добротностью колебательной системы называется безразмерная величина θ, равная произведению числа 2π и отношения энергии W(t) колебаний в произвольный момент времени и убыли этой энергии за один период затухающих колебаний

. (10)

Так как энергия пропорциональна квадрату амплитуды колебаний, то заменив энергии в формуле (10) квадратами амплитуд, определяемых формулой (6), получим

. (11)

При незначительных затуханиях ,  и . С учетом этого для добротности можно записать

. (12)

Приведенные здесь соотношения можно записать для различных колебательных систем. Для этого достаточно величины S, m, k и r заменить соответствующими величинами, характеризующими конкретные колебания. Например, для электромагнитных колебаний Sq, mL, k→1/C и rR.

Апериодический процесс.

При большом значении коэффициента затухания β происходит не только быстрое уменьшение амплитуды, но и увеличение периода колебаний. Из формулы (7) видно, что при циклическая частота колебаний обращается в нуль (Т = ∞), т.е. колебания не возникают. Это означает, что при большом сопротивлении вся энергия, сообщенная системе, к моменту возвращения ее в положение равновесия расходуется на работу против силы сопротивления. Система, выведенная из положения равновесия, возвращается в положение равновесия без запаса энергии. Говорят, что процесс протекает апериодически. При этом время установления равновесия определяется значением сопротивления.

Читателю предлагается самому посмотреть как влияют значения величин r, m, Т1 и φ0 на характер колебаний реальной колебательной системы.

Для этого необходимо навести курсор на диаграмму и двойным «клик» активизировать ее. Затем в открывшемся окне изменять значения величин, приведенных в цветных ячейках. По окончанию работы с графиком таблицу EXEL закрыть с сохранением или без сохранения данных.

Вопросы для самопроверки:

  1.  Вывести уравнение затухающих колебаний. Какой вид имеет график уравнения затухающих колебаний?
  2.  Какой формулой определяется коэффициент затухания? Как можно уменьшить коэффициент затухания?
  3.  Записать закон изменения амплитуды затухающих колебаний.
  4.  Какой формулой определяется частота собственных колебаний реальной колебательной системы?
  5.  Что характеризует логарифмический декремент затухания?
  6.  Что понимают под добротностью колебательной системы?


 

А также другие работы, которые могут Вас заинтересовать

14360. Методика визначення типу акцентуації рис характеру та темпераменту К. Леонгарда і X. Шмішека 54 KB
  Методика визначення типу акцентуації рис характеру та темпераменту К. Леонгарда і X. Шмішека Методика призначена для діагностики типу акцентуії особистості. В основу опитувальника розробленого X. Смішком закладена концепція акцентуйованої особистості К. Леонгарда...
14361. Стреляу Ян (Strelau, Jan) 59 KB
  Стреляу Ян Strelau Jan Родился: 1931 Гданьск Польша. Интересы: психология личности и социальная психология психофизиология и сравнительная психология дифференциальная психология. Образование: магистр. Варшавский университет 1958; доктор Варшавский университет. 19...
14362. Эмоции человека 696.69 KB
  Кэррол Э. Изард Эмоции человека ния которые я делил с моими психотерапевтическими пациен тами людьми требующими от нас развития науки об эмоциях которая улучшит многие важные службы связанные с помощью человеку. Младенцы и дети являются величаишими у
14363. Безпека життєдіяльності. Практичні роботи 1.84 MB
  ЗМІСТ ПЕРЕДМОВА Безпека життєдіяльності є інтегрованою науковою дисципліною яка ґрунтується на наукових досягненнях фундаментальних наук. Одним із стратегічних завдань модернізації вищої освіти в Україні у контексті вимог єдиного європейського освітнього п...
14364. ИССЛЕДОВАНИЕ ПРОВОДНИКОВ 1-го РОДА С ПОМОЩЬЮ МОСТА ПОСТОЯННОГО ТОКА 339.5 KB
  Лабораторная работа №31 ИССЛЕДОВАНИЕ ПРОВОДНИКОВ 1го РОДА С ПОМОЩЬЮ МОСТА ПОСТОЯННОГО ТОКА 1. Цели и задачи: необходимо определить сопротивления проводников с помощью моста постоянного тока и расчет удельное сопротивление для каждого проводника. 2. Приборы и...
14365. КОЛЬЦА НЬЮТОНА 808.5 KB
  Работа N 71.1. КОЛЬЦА НЬЮТОНА Прежде чем приступить к работе необходимо ознакомиться с введением по теме Интерференция и дифракция. ЦЕЛЬ РАБОТЫ: измерить длины волн излучения ртутной лампы и радиус кривизны линзы из анализа интерференционной картины в виде колец Ньют
14366. ОПРЕДЕЛЕНИЕ СКОРОСТИ УЛЬТРАЗВУКА ОПТИЧЕСКИМИ МЕТОДАМИ 405 KB
  СВЕТ ЗВУК X Z Введение по теме 72. ОПРЕДЕЛЕНИЕ СКОРОСТИ УЛЬТРАЗВУКА ОПТИЧЕСКИМИ МЕТОДАМИ УЛЬТРАЗВУК И ОПРЕДЕЛЕНИЕ НЕКОТОРЫХ МОЛЕКУЛЯРНЫХ ПАРАМЕТРОВ. Ультразвук  это упругие волны с частотами выше условной границы восприятия чел...
14367. Поляризация света 1.12 MB
  Поляризация света и поляризированный свет Часть электромагнитного излучения лежащая в диапазоне длин волн от 400 до 760 нм воспринимается человеческим глазом и называется светом. Световая волна характеризуется вектором напряженности электричества...
14368. КВАНТОВАЯ ОПТИКА. ЛАЗЕРЫ 110.5 KB
  КВАНТОВАЯ ОПТИКА Введение по теме 74. ЛАЗЕРЫ Квантовые свойства света проявляются при испускании и поглощении его веществом. Количественными характеристиками этих процессов являются спектры испускания и поглощения. Вид спектров поглощения и испускания зависит от при...