9125

Затухающие и вынужденные колебания

Контрольная

Физика

Тема: Затухающие и вынужденные колебания Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания. Решение дифференциального уравнения затухающих колебаний. Амплитуда и ...

Русский

2013-02-24

112 KB

51 чел.

Тема: Затухающие и вынужденные колебания

  1.  Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний.

Коэффициент затухания.

 

 

  1.  Решение дифференциального уравнения затухающих колебаний.

Амплитуда

и частота затухающих колебаний.

  1.  Логарифмический декремент затухания.

Добротность колебательной системы.

Апериодический процесс.

  1.  Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания.

Раньше мы рассмотрели собственные колебания консервативных (идеальных) колебательных систем. В таких системах возникают гармонические колебания, которые характеризуются постоянством амплитуды и периода, и описываются следующим дифференциальным уравнением

. (1)

В реальных же колебательных системах всегда присутствуют силы, препятствующие колебаниям (силы сопротивления). Например, в механических системах всегда присутствует сила трения. В этом случае энергия колебаний постепенно расходуется на работу против силы трения. Поэтому энергия и амплитуда колебаний будет уменьшаться, и колебания будут затухать. В электрическом колебательном контуре энергия колебаний расходуется на нагревание проводников. То есть реальные колебательные системы являются диссипативными.

Собственные колебания в реальных системах являются затухающими.

Чтобы получить уравнение колебаний в реальной системе необходимо учесть силу сопротивления. Во многих случаях можно считать, что при небольших скоростях изменения величины S сила сопротивления пропорциональна скорости

, (2)

где r – коэффициент сопротивления (коэффициент трения при механических колебаниях), а знак минус показывает, что сила сопротивления противоположна скорости.

Подставив силу сопротивления в формулу (2), получим дифференциальное уравнение, описывающее колебания в реальной системе

. (3)

Перенесем все члены в левую часть, разделим на величину m и введем следующие обозначения

(4), и  (5).

Как и прежде величина ω0 определяет частоту собственных колебаний идеальной системы. Величина же β характеризует диссипацию энергии в системе и называется коэффициентом затухания. Из формулы (5) видно, что коэффициент затухания можно уменьшить, увеличив значение величины m при неизменном значении величины r.

С учетом введенных обозначений получим дифференциальное уравнение затухающих колебаний

. (4)

  1.  Решение дифференциального уравнения затухающих колебаний. Амплитуда и частота затухающих колебаний.

Можно показать, что при небольших значениях коэффициента затухания общее решение дифференциального уравнения затухающих колебаний имеет следующий вид

, (5)

где величина, стоящая перед синусом называется амплитудой затухающих колебаний

. (6)

Частота ω затухающих колебаний определяется следующим выражением

. (7)

Из приведенной формулы (7) видно, что частота собственных колебаний реальной колебательной системы меньше частоты колебаний идеальной системы.

График уравнения затухающих колебаний приведен на рисунке. Сплошной линией показан график смещения S(t), а штрихпунктирной линией показано изменение амплитуды затухающих колебаний.

Следует иметь в виду, что в результате затухания не все значения величин повторяются. Поэтому, строго говоря, понятия частоты и периода не применимы к затухающим колебаниям. В этом случае под периодом понимают промежуток времени, по прошествии которого колеблющиеся величины принимают максимальные (или минимальные) значения.

  1.  Логарифмический декремент затухания. Добротность колебательной системы. Апериодический процесс.

Для количественной характеристики быстроты убывания амплитуды затухающих колебаний вводится логарифмический декремент затухания δ.

Логарифмическим декрементом затухания называется натуральный логарифм отношения амплитуд в моменты времени t и t+T, т.е. отличающихся на период.

По определению логарифмический декремент определяется следующей формулой

. (8)

Если вместо амплитуд в формуле (8) подставить формулу (6), то получим формулу, связывающую логарифмический декремент с коэффициентом затухания и периодом

. (9)

Промежуток времени τ, в течение которого амплитуда колебаний уменьшается в е раз, называется временем релаксации  . С учетом этого получим, что , где N – это число колебаний, в течение которых амплитуда уменьшается в е раз. То есть логарифмический декремент затухания обратно пропорционален числу колебаний, в течение которых амплитуда уменьшается в е раз. Если, например, β=0,001, то это означает, что через 100 колебаний амплитуда уменьшится в е раз.

Добротностью колебательной системы называется безразмерная величина θ, равная произведению числа 2π и отношения энергии W(t) колебаний в произвольный момент времени и убыли этой энергии за один период затухающих колебаний

. (10)

Так как энергия пропорциональна квадрату амплитуды колебаний, то заменив энергии в формуле (10) квадратами амплитуд, определяемых формулой (6), получим

. (11)

При незначительных затуханиях ,  и . С учетом этого для добротности можно записать

. (12)

Приведенные здесь соотношения можно записать для различных колебательных систем. Для этого достаточно величины S, m, k и r заменить соответствующими величинами, характеризующими конкретные колебания. Например, для электромагнитных колебаний Sq, mL, k→1/C и rR.

Апериодический процесс.

При большом значении коэффициента затухания β происходит не только быстрое уменьшение амплитуды, но и увеличение периода колебаний. Из формулы (7) видно, что при циклическая частота колебаний обращается в нуль (Т = ∞), т.е. колебания не возникают. Это означает, что при большом сопротивлении вся энергия, сообщенная системе, к моменту возвращения ее в положение равновесия расходуется на работу против силы сопротивления. Система, выведенная из положения равновесия, возвращается в положение равновесия без запаса энергии. Говорят, что процесс протекает апериодически. При этом время установления равновесия определяется значением сопротивления.

Читателю предлагается самому посмотреть как влияют значения величин r, m, Т1 и φ0 на характер колебаний реальной колебательной системы.

Для этого необходимо навести курсор на диаграмму и двойным «клик» активизировать ее. Затем в открывшемся окне изменять значения величин, приведенных в цветных ячейках. По окончанию работы с графиком таблицу EXEL закрыть с сохранением или без сохранения данных.

Вопросы для самопроверки:

  1.  Вывести уравнение затухающих колебаний. Какой вид имеет график уравнения затухающих колебаний?
  2.  Какой формулой определяется коэффициент затухания? Как можно уменьшить коэффициент затухания?
  3.  Записать закон изменения амплитуды затухающих колебаний.
  4.  Какой формулой определяется частота собственных колебаний реальной колебательной системы?
  5.  Что характеризует логарифмический декремент затухания?
  6.  Что понимают под добротностью колебательной системы?


 

А также другие работы, которые могут Вас заинтересовать

10205. РАЗВИТИЕ ВНИМАНИЯ СТАРШИХ ДОШКОЛЬНИКОВ В ИГРОВОЙ ДЕЯТЕЛЬНОСТИ 527.5 KB
  В дошкольном возрасте эти изменения касаются всех видов и свойств внимания. В целом, ребенок становится более сосредоточенным, у него появляется способность распределять внимание между различными предметами и переключаться с одного сложного объекта на другой.
10206. Организация перевозок скоропортящихся грузов на направлении 1.91 MB
  В курсовой работе необходимо определить особенности и условия перевозок скоропортящихся грузов на направлении, рассчитать годовую потребность для погрузки, количество «холодных поездов», произвести теплотехнический расчет, разработать технологию обслуживания рефрижераторного подвижного состава, схему размещения пунктов экипировки и технологического обслуживания
10207. Использование модулей при написании программного кода 69.5 KB
  Лабораторная работа № 8 Тема: Модули Цель работы: отработать навыки использования модулей при написании программного кода. Образец решения задачи. Задача № 1. Вставьте в двумерный массив строку из нулей после строки с номером t. Анализ постановки задачи В задаче ...
10208. Разработка карты наладки для обработки деталей на токарном станке с ЧПУ 23 KB
  Лабораторная работа №1 Разработка карты наладки для обработки деталей на токарном станке с ЧПУ Контрольные вопросы: 1. Назначение технологической документации. 2. Виды и классификация технологической документации. 3. Назначение карты наладки. Задание. 1. ...
10209. Изучение пульта оператора токарного станка с ЧПУ 34 KB
  Лабораторная работа №2 Изучение пульта оператора токарного станка с ЧПУ Цель работы: Ознакомление с пультом системы ЧПУ и режимы работы данной системы. Задание Изучить пульт управления станком; система Электроника НЦ31; изучить работу станка в различных ре
10210. Ввод управляющей программы, её контроль и редактирование 58 KB
  Лабораторная работа №3 Ввод управляющей программы её контроль и редактирование Цель работы: Ознакомление с порядком ввода контроля и редактирования управляющей программы. Режим ввода программы Переход в этот режим осуществляется нажатием клавиши
10211. Расчет Электромагнитного экрана 117 KB
  Расчет Электромагнитного экрана. Краткая информация. Электромагнитные экраны Для повышения стойкости и защиты ЭС от неблагоприятного влияния ЭМИ используют электромагнитные экраны. Защитные свойства экранов определяются не толщиной их стенки электрической
10212. Расчет индукционного нагревателя 77.5 KB
  Расчет индукционного нагревателя. Краткая теория. Описание Индуктором называют катушку индуктивности в которой производят нагрев вихревыми токами электропроводящих тел. При пропускании переменного тока через индуктор подключенный к выходу индукционной устано
10213. Расчет кабеля 344.5 KB
  Расчет кабеля Краткая теория. Кабель это один или несколько изолированных проводников заключенных в общую защитную оболочку. Голландское слово кабель переводится на русский язык как канат. Различные кабели в нашей стране их выпускают более 1000 типов используют...