91609

Локально адаптивный алгоритм сжатия

Доклад

Информатика, кибернетика и программирование

Сначала кодируется каждый символ L с использованием локально адаптивного алгоритма для каждого из символов индивидуально. Применяем алгоритм Хафмана или другой аналогичный алгоритм сжатия к элементам R рассматривая каждый элемент в качестве объекта для сжатия. Результатом работы алгоритма будет LI.

Русский

2015-07-21

36.53 KB

0 чел.

Локально адаптивный алгоритм сжатия

Этот алгоритм используется для кодирования (L,I), где L строка длиной N, а I – индекс. Это кодирование содержит в себе несколько этапов.

1. Сначала кодируется каждый символ L с использованием локально адаптивного алгоритма для каждого из символов индивидуально. Определяется вектор целых чисел R[0],…,R[N-1], который представляет собой коды для символов L[0],…,L[N-1]. Инициализируется список символов Y, который содержит в себе каждый символ из алфавита Х только один раз. Для каждого i = 0,…,N-1 устанавливается R[i] равным числу символов, предшествующих символу L[i] из списка Y. Взяв Y = [‘a’,’b’,’c’,’r’] в качестве исходного и L = ‘caraab’, вычисляем вектор R: (2 1 3 1 0 3).

2. Применяем алгоритм Хафмана или другой аналогичный алгоритм сжатия к элементам R, рассматривая каждый элемент в качестве объекта для сжатия. В результате получается код OUT и индекс I.

Рассмотрим процедуру декодирования полученного сжатого текста (OUT,I).

Здесь на основе (OUT,I) необходимо вычислить (L,I). Предполагается, что список Y известен.

  1. Сначала вычисляется вектор R, содержащий N чисел: (2 1 3 1 0 3).
  2. Далее вычисляется строка L, содержащая N символов, что дает значения R[0],…,R[N-1]. Если необходимо, инициализируется список Y, содержащий символы алфавита X (как и при процедуре кодирования). Для каждого i = 0,…,N-1 последовательно устанавливается значение L[i], равное символу в положении R[i] из списка Y (нумеруется, начиная с 0), затем символ сдвигается к началу Y. Результирующая строка L представляет собой последнюю колонку матрицы M. Результатом работы алгоритма будет (L,I). Взяв Y = [‘a’,’b’,’c’,’r’] вычисляем строку L = ‘caraab’.

Наиболее важным фактором, определяющим скорость сжатия, является время, необходимое для сортировки вращений во входном блоке. Наиболее быстрый способ решения проблемы заключается в сортировке связанных строк по суффиксам.

Для того чтобы сжать строку S, сначала сформируем строку S’, которая является объединением S c EOF, новым символом, который не встречается в S. После этого используется стандартный алгоритм к строке S’. Так как EOF отличается от прочих символов в S, суффиксы S’ сортируются в том же порядке, как и вращения S’. Это может быть сделано путем построения дерева суффиксов, которое может быть затем обойдено в лексикографическом порядке для сортировки суффиксов. Для этой цели может быть использован алгоритм формирования дерева суффиксов Мак-Крейгта. Его быстродействие составляет 40% от наиболее быстрой методики в случае работы с текстами. Алгоритм работы с деревом суффиксов требует более четырех слов на каждый исходный символ. Манбер и Майерс предложили простой алгоритм сортировки суффиксов строки. Этот алгоритм требует только двух слов на каждый входной символ. Алгоритм работает сначала с первыми i символами суффикса а за тем, используя положения суффиксов в сортируемом массиве, производит сортировку для первых 2i символов. К сожалению этот алгоритм работает заметно медленнее.

В книге [M.Burrows and D.J.Wheeler. A block-sorting Lossless Data Compression Algorithm. Digital Systems Research Center. SRC report 124. May 10, 1994.] предложен несколько лучший алгоритм сортировки суффиксов. В этом алгоритме сортируются суффиксы строки S, которая содержит N символов S[0,…,N-1].

  1. Пусть k число символов, соответствующих машинному слову. Образуем строку S’ из S путем добавления k символов EOF в строку S. Предполагается, что EOF не встречается в строке S.
  2. Инициализируем массив W из N слов W[0,…,N-1] так, что W[i] содержат символы S’[i,…,i+k-1] упорядоченные таким образом, что целочисленное сравнение слов согласуется с лексикографическим сравнением для k-символьных строк. Упаковка символов в слова имеет два преимущества: это позволяет для двух префиксов сравнить сразу k байт и отбросить многие случаи, описанные ниже.
  3. Инициализируется массив V из N целых чисел. Если элемент V содержит j, он представляет собой суффикс S’, чей первый символ равен S’[j]. Когда выполнение алгоритма завершено, суффикс V[i] будет i-ым суффиксом в лексикографическом порядке.
  4. Инициализируем целочисленный массив V так, что для каждого i = 0,…,N-1 : V[i]=i.
  5. Сортируем элементы V, используя первые два символа каждого суффикса в качестве ключа сортировки. Далее для каждого символа ch из алфавита выполняем шаги 6 и 7. Когда эти итерации завершены, V представляет собой отсортированные суффиксы S и работа алгоритма завершается.
  6. Для каждого символа ch’ в алфавите выполняем сортировку элементов V, начинающихся с ch, за которым следует ch’. В процессе выполнения сортировки сравниваем элементы V путем сопоставления суффиксов, которые они представляют при индексировании массива W. На каждом шаге рекурсии следует отслеживать число символов, которые оказались равными в группе, чтобы не сравнивать их снова. Все суффиксы, начинающиеся с ch, отсортированы в рамках V.
  7. Для каждого элемента V[i], соответствующего суффиксу, начинающемуся с ch (то есть, для которого S[V[i]] = ch), установить W[V[i]] значение с ch в старших битах и i в младших битах. Новое значение W[V[i]] сортируется в те же позиции, что и старые значения.

Данный алгоритм может быть улучшен различными способами. Одним из самоочевидных методов является выбор символа ch на этапе 5, начиная с наименьшего общего символа в S и предшествующий наиболее общему.


 

А также другие работы, которые могут Вас заинтересовать

3927. Работа агрегата Центробежный насос ЭЦНГ-10С76 89 KB
  Основными характеристиками надежности объектов эксплуатации являются функция плотности распределения наработок изделий до отказа f(t), функция распределения наработок изделий до отказа (Вероятность отказа есть функция распределения време...
3928. Общая статистика. Значение группировок и интервалов 276.5 KB
  Сводка и группировка. На основе собранных данных нельзя произвести расчет и сделать выводы, для начала их нужно обобщить и свести в единую таблицу. Для этих целей служат сводка и группировка. Сводка – комплекс последовательных операций по обобщ...
3929. Сутність поняття соціальна технологія 749 KB
  Сутність поняття «соціальна технологія» полягає в наступних пунктах: Соціальна технологія — це певний спосіб здійснення людської діяльності по досягненню суспільно значимих цілей Сутність даного способу полягає в поопераційному з...
3930. Соціальна технологія підготовки та проведення фокус-групового дослідження 78.5 KB
  Соціальна технологія підготовки та проведення фокус-групового дослідження в рамках вивчення дисципліни Методи, методологія та технологія соціологічних досліджень Суспільна потреба, яку покликана задовольнити соціальна технологія: Будучи студен...
3931. Соціальна технологія проведення анкетного опитування 66.5 KB
  Соціальна технологія проведення анкетного опитування в рамках навчальної дисципліни ММТСД. Суспільнапотреба: Виникнення складностей у студентів при підготовці, проведенні анкетного опитування та обробці даних, через брак теоретичних знань, нав...
3932. Социальная технология подготовки кандидата на конкурс Містер факультету 40.5 KB
  Социальная технология подготовки кандидата на конкурс Містер факультету Общественная потребность, которую призванная удовлетворить социальная технология: недостаточный уровень развития организационных навыков у студентов и низкое качество творческих...
3933. Характеристика адміністративної системи з точки зору системної теорії на прикладі магазину продажу взуття Монарх 123.5 KB
  Характеристика адміністративної системи з точки зору системної теорії Об’єктом для системного аналізу буде магазин продажу взуття «Монарх», тому що в ній я мала досвід роботи. Система. В даному випадку системою є магазин продажу взуття «М...
3934. Фіналіст AES – шифр Serpent 134.5 KB
  Тема доповіді – Фіналіст AES – шифр Serpent. План Загальні відомості про конкурс AES. Основні відомості про шифр Serpent Структура алгоритму Розшифрування та розширення ключа. Алгоритм вибору підключів і...
3935. Легальна влада, її сутність та особливості 133 KB
  Міждисциплінарна сутність категорії влади, що розглядається як соціологією, так і політологією, психологією та ін, складність у визначенні співвідношення фактичної та формальної влади породжують проблему співвідношення понять легальної, легітимної та політичної влади.