91626

Алгоритм RSA

Доклад

Информатика, кибернетика и программирование

Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению.

Русский

2015-07-21

43.06 KB

0 чел.

Алгоритм RSA

Несмотря на довольно большое число различных СОК, наиболее популярна - криптосистема RSA, разработанная в 1977 году и получившая название в честь ее создателей: Рона Ривеста, Ади Шамира и Леонарда Эйдельмана.

Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению. Поэтому для любой длины ключа можно дать нижнюю оценку числа операций для раскрытия шифра, а с учетом производительности современных компьютеров оценить и необходимое на это время.

Возможность гарантированно оценить защищенность алгоритма RSA стала одной из причин популярности этой СОК на фоне десятков других схем. Поэтому алгоритм RSA используется в банковских компьютерных сетях, особенно для работы с удаленными клиентами (обслуживание кредитных карточек).

В настоящее время алгоритм RSA используется во многих стандартах, среди которых SSL, S-HHTР, S-MIME, S/WAN, STT и РCT.

Рассмотрим математические результаты, положенные в основу этого алгоритма.

Теорема 1. (Малая теорема Ферма.)

Если р - простое число, то

xр-1 = 1 (mod р) (1)

для любого х, простого относительно р, и

xр = х (mod р) (2)

для любого х.

Доказательство. Достаточно доказать справедливость уравнений (1) и (2) для хZр. Проведем доказательство методом индукции.

Очевидно, что уравнение (8.2.2) выполняется при х=0 и 1. Далее

xр=(x-1+1)р= C(р,j)(x-1)j=(x-1)р+1 (mod р),

0jр

так как C(р,j)=0(mod р) при 0<j<р. С учетом этого неравенства и предложений метода доказательства по индукции теорема доказана.

Определение. Функцией Эйлера (n) называется число положительных целых, меньших n и простых относительно n.

n

2

3

4

5

6

7

8

9

10

11

12

(n)

1

2

2

3

2

6

4

6

4

10

4

Теорема 2. Если n=рq, (р и q - отличные друг от друга простые числа), то

(n)=(р-1)(q-1).

Теорема 3. Если n=рq, (р и q - отличные друг от друга простые числа) и х - простое относительно р и q, то

x(n) = 1 (mod n).

Следствие . Если n=рq, (р и q - отличные друг от друга простые числа) и е простое относительно (n), то отображение

Еe,n: xxe (mod n)

является взаимно однозначным на Zn.

Очевиден и тот факт, что если е - простое относительно (n), то существует целое d, такое, что

ed = 1 (mod (n)) (3)

На этих математических фактах и основан популярный алгоритм RSA.

Пусть n=рq, где р и q - различные простые числа. Если e и d удовлетворяют уравнению (8.2.3), то отображения Еe,n и Еd,n являются инверсиями на Zn. Как Еe,n, так и Еd,n легко рассчитываются, когда известны e, d, р, q. Если известны e и n, но р и q неизвестны, то Еe,n представляет собой одностороннюю функцию; нахождение Еd,n по заданному n равносильно разложению n. Если р и q - достаточно большие простые, то разложение n практически не осуществимо. Это и заложено в основу системы шифрования RSA.

Пользователь i выбирает пару различных простых рi и qi и рассчитывает пару целых (ei, di), которые являются простыми относительно (ni), где ni=рi qi . Справочная таблица содержит публичные ключи {(ei ,ni)}.

Предположим, что исходный текст

x =(x0, x1, ..., xn-1), xZn , 0 i < n,

сначала представлен по основанию ni :

N = c0+ci ni+....

Пользователь i зашифровывает текст при передаче его пользователю j, применяя к n отображение Edi,ni :

N Edi,ni n = n'.

Пользователь j производит дешифрование n', применяя Eei,ni :

N' Eei,ni n'= Eei,ni Edi,ni n = n .

Очевидно, для того чтобы найти инверсию Edi,ni по отношению к Eei,ni, требуется знание множителей n=рi qi. Время выполнения наилучших из известных алгоритмов разложения при n=10100 на сегодняшний день выходит за пределы современных технологических возможностей.

Рассмотрим небольшой пример, иллюстрирующий применение алгоритма RSA.

Пример Зашифруем сообщение "САВ". Для простоты будем использовать маленькие числа (на практике применяются гораздо большие).

  1. Выберем р=3 и q=11.
  2. Определим n=3*11=33.
  3. Найдем (р-1)(q-1)=20. Следовательно, в качестве d, взаимно простое с 20, например, d=3.
  4. Выберем число е. В качестве такого числа может быть взято любое число, для которого удовлетворяется соотношение (е*3) (mod 20) = 1, например 7.
  5. Представим шифруемое сообщение как последовательность целых чисел с помощью отображения: А1, В2, С3. Тогда сообщение принимает вид (3,1,2). Зашифруем сообщение с помощью ключа {7,33}.

ШТ1 = (37) (mod 33) = 2187 (mod 33) = 9,

ШТ2 = (17) (mod 33) = 1 (mod 33) = 1,

ШТ3 = (27) (mod 33) = 128 (mod 33) = 29.

  1. Расшифруем полученное зашифрованное сообщение (9,1,29) на основе закрытого ключа {3,33}:

ИТ1 = (93) (mod 33) = 729 (mod 33) = 3,

ИТ2= (13) (mod 33) = 1 (mod 33) = 1,

ИТ3 = (293) (mod 33) = 24389 (mod 33) = 2.

Итак, в реальных системах алгоритм RSA реализуется следующим образом: каждый пользователь выбирает два больших простых числа, и в соответствии с описанным выше алгоритмом выбирает два простых числа e и d. Как результат умножения первых двух чисел (р и q) устанавливается n.

{e,n} образует открытый ключ, а {d,n} - закрытый (хотя можно взять и наоборот).

Открытый ключ публикуется и доступен каждому, кто желает послать владельцу ключа сообщение, которое зашифровывается указанным алгоритмом. После шифрования, сообщение невозможно раскрыть с помощью открытого ключа. Владелец же закрытого ключа без труда может расшифровать принятое сообщение.


 

А также другие работы, которые могут Вас заинтересовать

54163. Додавання та віднімання дробів з різними знаменниками 807.5 KB
  Тема уроку: розвязання вправ за темою Додавання та віднімання дробів з різними знаменниками. Розвивальна мета: розвивати практичні вміння та навички співнавчання та взаємонавчання; розвивати мислення; самостійність. Доданок Доданок Сума 27 Готуючись до уроку я розвязала ваше домашнє завдання але потім картки впали і переплутались. Розвязок.
54164. Розвязування задач на відсотки 195 KB
  Крім того, велика частина інформації, яку ми отримуємо, подана у вигляді відсотків. Кожному фахівцю у всіх сферах людської діяльності треба мати справу з відсотками. Отже, наша задача - мати міцні знання про відсоток.Доповідь учнів про історію виникнення поняття відсотка.
54165. Додатні та від’ємні числа. Додавання та віднімання раціональних чисел 246 KB
  Додатні та відємні числа. Сьогодні ми продовжимо працювати з додатними і відємними числамивдосконалювати вміння додавати...
54166. Означення квадратного рівняння. Неповні квадратні рівняння та їх розв’язки 747.5 KB
  Мета: домогтися свідомого розуміння учнями означення квадратного рівняння зведеного квадратного рівняння неповного квадратного рівняння назви коефіцієнтів квадратного рівняння; сформувати первинні вміння формулювати означення квадратного рівняння та його видів зведеного та неповного визначати коефіцієнти квадратного рівняння та за ними визначити вид квадратного рівняння підготувати учнів до сприйняття розвязування неповних квадратних рівнянь. Чи рівносильні рівняння: а 3х 2 = х...
54167. Математический футбол. Параллельность прямых и плоскостей в пространстве 610 KB
  Прямая а не лежит в плоскости квадрата АВСD и параллельна его стороне АВ. Прямая в не лежит в плоскости квадрата КМLN и параллельна его стороне М L.Каково взаимное расположение прямой и плоскости в пространстве Слайд № 18 Прямая а лежит в плоскости. Прямая а параллельна плоскости .
54168. Множення раціональних чисел 603.5 KB
  Для цього обчислимо приклади усно записані на веслах нашого корабля і прочитаємо імя відомого математика який сформував правила множення ділення віднімання і додавання раціональних чисел. Математика кібернетика...
54169. Новорічна математична ялинка 286.5 KB
  Мета: перевірити якість знань і вмінь учнів з теми; зацікавити математикою; розвивати логічне мислення культуру математичних записів, мовлення. Тип уроку: урок узагальнення та систематизації знань.
54170. Урок-казка. Чарівні слова. Розвязування рівнянь 165 KB
  Таблиці плакати до казки про ІванаЦаревича і Чахлика Невмирущого. Клас розбивається на 3 команди і вибирається ІванЦаревич. Там під дубом вчений кіт Русалонька за принцем плаче КоникГорбоконик на підмогу скаче Привид Кентервільський всіх лякає ІванЦаревич Змія перемагає. Учитель: В деякому царстві живбув ІванЦаревич.
54171. Особливості навчання математиці дітей із затримкою психічного розвитку в умовах якісної освіти 450.5 KB
  Поданий матеріал може бути використаний вчителями математики, які працюють як в спеціалізованих класах корекції для дітей із затримкою психічного розвитку, так і звичайних класах загальноосвітньої школи. В посібнику відображені питання класифікації дітей із затримкою психічного розвитку, зазначені причини затримки розвитку, подана характеристика дітей даної категорії та визначені особливості їх навчальної діяльності на уроках математики.