91626

Алгоритм RSA

Доклад

Информатика, кибернетика и программирование

Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению.

Русский

2015-07-21

43.06 KB

0 чел.

Алгоритм RSA

Несмотря на довольно большое число различных СОК, наиболее популярна - криптосистема RSA, разработанная в 1977 году и получившая название в честь ее создателей: Рона Ривеста, Ади Шамира и Леонарда Эйдельмана.

Они воспользовались тем фактом, что нахождение больших простых чисел в вычислительном отношении осуществляется легко, но разложение на множители произведения двух таких чисел практически невыполнимо. Доказано (теорема Рабина), что раскрытие шифра RSA эквивалентно такому разложению. Поэтому для любой длины ключа можно дать нижнюю оценку числа операций для раскрытия шифра, а с учетом производительности современных компьютеров оценить и необходимое на это время.

Возможность гарантированно оценить защищенность алгоритма RSA стала одной из причин популярности этой СОК на фоне десятков других схем. Поэтому алгоритм RSA используется в банковских компьютерных сетях, особенно для работы с удаленными клиентами (обслуживание кредитных карточек).

В настоящее время алгоритм RSA используется во многих стандартах, среди которых SSL, S-HHTР, S-MIME, S/WAN, STT и РCT.

Рассмотрим математические результаты, положенные в основу этого алгоритма.

Теорема 1. (Малая теорема Ферма.)

Если р - простое число, то

xр-1 = 1 (mod р) (1)

для любого х, простого относительно р, и

xр = х (mod р) (2)

для любого х.

Доказательство. Достаточно доказать справедливость уравнений (1) и (2) для хZр. Проведем доказательство методом индукции.

Очевидно, что уравнение (8.2.2) выполняется при х=0 и 1. Далее

xр=(x-1+1)р= C(р,j)(x-1)j=(x-1)р+1 (mod р),

0jр

так как C(р,j)=0(mod р) при 0<j<р. С учетом этого неравенства и предложений метода доказательства по индукции теорема доказана.

Определение. Функцией Эйлера (n) называется число положительных целых, меньших n и простых относительно n.

n

2

3

4

5

6

7

8

9

10

11

12

(n)

1

2

2

3

2

6

4

6

4

10

4

Теорема 2. Если n=рq, (р и q - отличные друг от друга простые числа), то

(n)=(р-1)(q-1).

Теорема 3. Если n=рq, (р и q - отличные друг от друга простые числа) и х - простое относительно р и q, то

x(n) = 1 (mod n).

Следствие . Если n=рq, (р и q - отличные друг от друга простые числа) и е простое относительно (n), то отображение

Еe,n: xxe (mod n)

является взаимно однозначным на Zn.

Очевиден и тот факт, что если е - простое относительно (n), то существует целое d, такое, что

ed = 1 (mod (n)) (3)

На этих математических фактах и основан популярный алгоритм RSA.

Пусть n=рq, где р и q - различные простые числа. Если e и d удовлетворяют уравнению (8.2.3), то отображения Еe,n и Еd,n являются инверсиями на Zn. Как Еe,n, так и Еd,n легко рассчитываются, когда известны e, d, р, q. Если известны e и n, но р и q неизвестны, то Еe,n представляет собой одностороннюю функцию; нахождение Еd,n по заданному n равносильно разложению n. Если р и q - достаточно большие простые, то разложение n практически не осуществимо. Это и заложено в основу системы шифрования RSA.

Пользователь i выбирает пару различных простых рi и qi и рассчитывает пару целых (ei, di), которые являются простыми относительно (ni), где ni=рi qi . Справочная таблица содержит публичные ключи {(ei ,ni)}.

Предположим, что исходный текст

x =(x0, x1, ..., xn-1), xZn , 0 i < n,

сначала представлен по основанию ni :

N = c0+ci ni+....

Пользователь i зашифровывает текст при передаче его пользователю j, применяя к n отображение Edi,ni :

N Edi,ni n = n'.

Пользователь j производит дешифрование n', применяя Eei,ni :

N' Eei,ni n'= Eei,ni Edi,ni n = n .

Очевидно, для того чтобы найти инверсию Edi,ni по отношению к Eei,ni, требуется знание множителей n=рi qi. Время выполнения наилучших из известных алгоритмов разложения при n=10100 на сегодняшний день выходит за пределы современных технологических возможностей.

Рассмотрим небольшой пример, иллюстрирующий применение алгоритма RSA.

Пример Зашифруем сообщение "САВ". Для простоты будем использовать маленькие числа (на практике применяются гораздо большие).

  1. Выберем р=3 и q=11.
  2. Определим n=3*11=33.
  3. Найдем (р-1)(q-1)=20. Следовательно, в качестве d, взаимно простое с 20, например, d=3.
  4. Выберем число е. В качестве такого числа может быть взято любое число, для которого удовлетворяется соотношение (е*3) (mod 20) = 1, например 7.
  5. Представим шифруемое сообщение как последовательность целых чисел с помощью отображения: А1, В2, С3. Тогда сообщение принимает вид (3,1,2). Зашифруем сообщение с помощью ключа {7,33}.

ШТ1 = (37) (mod 33) = 2187 (mod 33) = 9,

ШТ2 = (17) (mod 33) = 1 (mod 33) = 1,

ШТ3 = (27) (mod 33) = 128 (mod 33) = 29.

  1. Расшифруем полученное зашифрованное сообщение (9,1,29) на основе закрытого ключа {3,33}:

ИТ1 = (93) (mod 33) = 729 (mod 33) = 3,

ИТ2= (13) (mod 33) = 1 (mod 33) = 1,

ИТ3 = (293) (mod 33) = 24389 (mod 33) = 2.

Итак, в реальных системах алгоритм RSA реализуется следующим образом: каждый пользователь выбирает два больших простых числа, и в соответствии с описанным выше алгоритмом выбирает два простых числа e и d. Как результат умножения первых двух чисел (р и q) устанавливается n.

{e,n} образует открытый ключ, а {d,n} - закрытый (хотя можно взять и наоборот).

Открытый ключ публикуется и доступен каждому, кто желает послать владельцу ключа сообщение, которое зашифровывается указанным алгоритмом. После шифрования, сообщение невозможно раскрыть с помощью открытого ключа. Владелец же закрытого ключа без труда может расшифровать принятое сообщение.


 

А также другие работы, которые могут Вас заинтересовать

74794. Распределение частиц (молекул) по скоростям в системах с большим количеством частиц. Формула Максвелла 39 KB
  При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля, действующие на газ, отсутствуют.
74795. Характеристические скорости молекул (среднеарифметическая, среднеквадратичная, вероятная). Cреднеквадратичная скорость движения молекул 34.5 KB
  Интересен вопрос о скорости движения молекул газа. В газен царит полный хаос, молекулы движутся по всем направлениям с самыми разными скоростями. Оказывается, что в газе есть молекулы с очень маленькими скоростями и с очень большими, но их сравнительно мало.
74796. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Точка инверсии 66 KB
  Рассмотрим эффект Джоуля — Томсона. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с пористой перегородкой находятся два поршня, которые могут перемешаться без трения.
74797. Фазовые переходы. Параметры критического состояния 48.5 KB
  Фазой называется термодинамически равновесное состояние вещества отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Переход вещества из одной фазы в другую фазовый переход всегда связан с качественными изменениями свойств вещества.
74798. Реальные газы. Уравнение Ван-дер-Ваальса. Критические параметры 51.5 KB
  Учитывая собственный объем молекул и силы межмолекулярного взаимодействия голландский физик И. Учет собственного объема молекул. Наличие сил отталкивания которые противодействуют проникновению в занятый молекулой объем других молекул сводится к тому что фактический свободный...
74799. Диаграмма фазовых состояний. Тройная точка 60 KB
  Если система является однокомпонентной, т. е. состоящей из химически однородного вещества или его соединения, то понятие фазы совпадает с понятием агрегатного состояния. одно и то же вещество в зависимости от соотношения между удвоенной средней энергией, приходящейся на одну степень...
74800. Адиабатическое дросселирование. Эффект Джоуля-Томсона 57.5 KB
  Подобный процесс но с реальным газом адиабатическое расширение реального газа с совершением внешними силами положительной работы осуществили английские физики Дж. После прохождения газа через пористую перегородку в правой части газ характеризуется параметрами...
74801. Физика как наука. Основные разделы, этапы развития. Связь с философией и техникой 32 KB
  Физика – наука о наиболее простых и общих формах движения материи и их взаимных превращениях. Физика и ее законы лежат в основе всего естествознания. Она относится к точным наукам и изучает количественные закономерности явлений и процессов в окружающем нас мире.