9208

Обмен веществ и превращение энергии в клетке. Обмен веществ и превращение энергии. Пластический и энергетический обмен

Конспект урока

Биология и генетика

Обмен веществ и превращение энергии в клетке. Обмен веществ и превращение энергии. Пластический и энергетический обмен. Тип урока - изучение нового материала. Цели: Познакомить учащихся с понятием обмен веществ в организме...

Русский

2013-02-26

45 KB

114 чел.

Обмен веществ и превращение энергии в клетке. 

Обмен веществ и превращение энергии. Пластический и энергетический обмен.

Тип урока – изучение нового материала.

Цели:

  1.  Познакомить учащихся с понятием «обмен веществ в организме».
  2.  Показать, что ассимиляция и диссимиляция  - это два взаимосвязанных процесса.
  3.  Изучить этапы энергетического обмена.

План урока.

Орг. момент - 5 мин.

Объяснение нового материала – 70 мин.

Постановка д.з. – 5 мин.

Ход урока.

Орг. момент.

Объяснение нового материала.

Метаболизм – ряд стадий, на каждой из которых молекула под действием ферментов слегка видоизменяется до тех пор, пока не образуется необходимое организму соединение.

Обмен веществ – последовательное потребление, превращение, использование, накопление и потеря веществ и энергии в живых организмах в  процессе их жизни.

Обмен  веществ  складывается из двух взаимосвязанных процессов – анаболизма и катаболизма.(Схема)

Ассимиляция, или анаболизм (пластический обмен), - совокупность химических процессов, направленных на образование и обновление структурных частей клеток.

  1.  В ходе ассимиляции происходит биосинтез сложных молекул из простых молекул-предшественников или из молекул веществ, поступивших из внешней среды.
  2.  Важнейшими процессами ассимиляции являются синтез белков и нуклеиновых кислот (свойственный  всем организмам) или  синтез углеводов (только у растений, некоторых бактерий и цианобактерий).
  3.  В процессе ассимиляции при образовании сложных молекул идёт накопление энергии, главным  образом в виде химических связей.

Диссимиляция, или катаболизм (энергетический обмен), - совокупность реакций, в которых происходит распад органических веществ высвобождением энергии.

  1.  При разрыве химических связей в молекулах органических соединений энергия высвобождается и запасается виде молекул аденозинтрифосфорной  кислоты(АТФ).
  2.  Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, а у  прокариот -  в цитоплазме, на мембранных структурах.
  3.  Диссимиляция обеспечивает все биохимические процессы в клетке энергией.

Всем живым клеткам постоянно нужна энергия, необходимая для протекания в них различных  биологических и химических реакций. Одни организмы для этих реакция используют энергию солнечного света (при фотосинтезе), другие – энергию химических связей органических веществ, поступающих с пищей. Извлечение энергии из пищевых веществ осуществляется в клетке путём их расщепления и окисления кислородом, поступающим в процессе дыхания. Поэтому этот процесс называют биологическим окислением, или клеточным дыханием.

Биологическое окисление с участием кислорода называют аэробным, без кислорода – анаэробным. Процесс биологического окисления идёт многоступенчато. При этом в клетке происходит накопление энергии в виде молекул АТФ и других органических соединений.

Источником энергии для всех видов активности служит химическая энергия молекул, запасённая в связях между атомами. При разрыве связей эта энергия высвобождается, при этом она аккумулирует  в  форме АТФ (содержащей  макроэнергетические  связи, во время разрыва которых высвобождается около 40 кДж/моль энергии)  и в этой форме используется затем для выполнения различной работы в клетке.

Этапы энергетического обмена.

Название этапа, локализация в организме

Особенности протекания этапов

Энергетическая ценность

  1.  Подготовительный (в органах пищеварения

Молекулы сложных органических соединений расщепляются под действием ферментов на более мелкие:

Белки – аминокислоты

Углеводы – моносахариды

Жиры – глицерин и жирные кислоты.

Небольшое количество энергии, рассеивающейся в виде тепла.

  1.  Бескислородный (неполный) гликолиз;  у микроорганизмов – брожение (протекание в клетках)

Дальнейшее расщепление молекул ( при участии ферментов) до более простых соединений. Так, глюкоза распадается на две молекулы пировиноградной кислоты (C3H4O3),которая затем восстанавливается в молочную кислоту (C3H6O3); в реакциях участвуют  H3PO4  и АДФ:

C6H12O6 +2 H3PO4 +2АДФ

      2 C3H6O3 +2АДФ+ 2 H2O

У дрожжевых грибов – спиртовое брожение:

C6H12O6 +2 H3PO4 +2АДФ

      2C2H5OH+2CO2+ 2АДФ+

+ 2 H2O

При расщеплении глюкозы 60% выделившейся энергии превращается  в тепло; 40% идёт на синтез двух молекул АТФ, эта часть энергии запасается.

  1.  Кислородный (протекает в матриксе митохондрий и на внутренних мембранах митохондриях)

При доступе кислорода к клеткам образовавшиеся на предыдущем этапе вещества окисляются до CO2 b H2O:

2C3H6O3+6O2+36 H3PO4 +36АДФ       6CO2 + +38H2O+36АДФ

Образовавшиеся молекулы АТФ выходят за пределы митохондрий и участвуют во всех процессах клетки, где необходима энергия.

При окислении  двух молекул молочной кислоты образуется 36молекул АТФ

3.Постановка д.з.

В учебнике - параграф 21, 22. Подготовиться к проверочной работе.


 

А также другие работы, которые могут Вас заинтересовать

30111. Менделизм 19.19 KB
  При скрещивании двух гомозиготных организмов относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков всё первое поколение гибридов F1 окажется единообразным и будет нести признак одного из родителей Этот закон также известен как закон доминирования признаков. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении. Закон расщепления признаков: Закон расщепления или второй...
30112. Хромосомная теория наследственности (Т. X. Морган и др.) 18.08 KB
  Хромосомная теория наследственности Т. Доказано что количество наследственных признаков организма значительно превышает число хромосом гаплоидного набора. Так в гаплоидном наборе классического объекта генетических исследований мухидрозофилы есть только четыре хромосомы но число наследственных признаков и соответственно генов которые их определяют несомненно значительно больше. Это означает что в каждой хромосоме находится много генов.
30113. Генетика пола, Искусственная регуляция пола 42.68 KB
  Генетика пола Пол это совокупность признаков и свойств организма определяющих его участие в размножении. Пол особи может определяться: а до оплодотворения яйцеклетки сперматозоидом прогамное определение пола; б в момент оплодотворения сингамное определение пола; в после оплодотворения эпигамное определение пола. У морского кольчатого червя бонеллия определение пола происходит в процессе онтогенеза: если личинка садится на дно из нее развивается самка а если...
30114. Цитоплазматическое наследование 12.96 KB
  Цитоплазматическое наследование: Для того чтобы та или иная структура могла выполнять роль материального носителя наследственности и обеспечивать количественные закономерности наследования как уже было сказано она должна обладать тремя основными свойствами: выполнять жизненно важные функции в метаболизме клетки обладать способностью к самовоспроизведению точно распределяться в дочерние клетки при делении. Так центриоли участвуют в образовании веретена при делении клетки пластиды обеспечивают некоторые синтетические процессы митохондрии...
30115. Взаимодействие генов 14.76 KB
  Полное доминирование заключается в том что в гетерозиготе полученной при скрещивании представителей чистых линий различающихся по одной пара альтернативных признаков один из двух аллелей не проявляет своего действия. В фенотипе 3 частей проявился доминантный признак а у 1 части рецессивный. При неполном доминировании гибриды первого поколения имеют фенотип укладывающийся в рамки проявления признака между исходными родителями и никогда их не достигающий т. признак может быть любым но не как у представителей чистых линий: меньше...
30116. Инструментальные материалы. Упрочняющая обработка 220 KB
  Инструментальными являются материалы, основное назначение которых - оснащение рабочей части инструментов. К ним относятся инструментальные углеродистые, легированные и быстрорежущие стали, твердые сплавы, минералокерамика, сверхтвердые материалы.
30117. Генные мутации 33.8 KB
  Генные мутации. По последствиям генных мутаций их классифицируют на нейтральные регуляторные и динамические а также на миссенс и нонсенсмутации. Нейтральная мутации молчащая мутация мутация не имеет фенотипического выражения например в результате вырожденности генетического кода. Динамические мутации мутации обусловленные увеличением числа тринуклеотидных повторов в функционально значимых частях гена.
30118. Хромосомные мутации и геномные мутации 16.53 KB
  Хромосомные мутации и геномные мутации. Различают два основных типа хромосомных мутаций: численные хромосомные мутации и структурные хромосомные мутации. В свою очередь численные мутации делятся на анэуплоидии когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом и полиплоидии когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией а возникновение дополнительной хромосомы у любой пары хромосом трисомией.
30119. Модификационная (фенотипическая) изменчивость 16.63 KB
  Характеристика: обратимость изменения исчезают при смене специфических условий окружающей среды спровоцировавших их групповой характер изменения в фенотипе не наследуются наследуется норма реакции генотипа статистическая закономерность вариационных рядов затрагивает фенотип при этом не затрагивая сам генотип.По размаху нормы реакции узкая более характерна для качественных признаков широкая более характерна для количественных признаков 3.По длительности: есть лишь у особи или группы особей которые подверглись влиянию...