92196

Средства модлирования и модели, применяемые при проект

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Существует многообразие видов моделирования. Моделирование статических безинерционных систем Имеется система безинерционного типа имеющая множество входов X и множество выходов Y – рис. Рис.

Русский

2015-07-28

79.5 KB

0 чел.

19,1 Средства модлирования и модели, применяемые при проект.  

В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие (адекватность) может иметь место лишь при замене объекта точно таким же. По этому при моделировании стремятся лишь к тому, чтобы модель хорошо отображала исследуемую сторону функционирования объекта.

Существует многообразие видов моделирования (рис.1.8).

Рис.1.8

Важное значение при моделировании уделяется математическим методам, среди которых аналитические и имитационные. Аналитические методы обладают универсальностью, однако, к сожалению, для сложных систем их бывает использовать трудно или невозможно. В этом случае широко используется имитационное моделирование, содержащее алгоритм функционирования системы, которое обычно реализуется на ЭВМ. Подобными методами можно моделировать любые сложные системы, но их модели носят частный характер.

Физическое моделирование чаще всего реализуется на заключительной стадии разработки систем.

2 Моделирование статических безинерционных систем

Имеется система безинерционного типа, имеющая множество входов X и множество выходов Y – рис.2.1.

Рис.2.1

Возникает задача математического описания (создания математической модели), т.е. нахождение Y=F(X)

19,2 Нерекурсивные модели

Нерекурсивное описание системы заключается в определении по известному

входному сигналу Xk на любом шаге k выходного сигнала Yk. Очевидно, что любой сигнал Xk можно представить как сумму импульсов одинаковой длительности T0 и разной величины (рис.3.2).

Рис.3.2

На основании принципа линейности выходной сигнал системы равен сумме элементарных выходных сигналов (реакций) на действие входного импульса. В качестве элементарного входного сигнала используют нормированный импульс X(t) = (t) с единичной площадью (рис.3.3), который называется дельта-импульс.

Рис.3.3

Если на вход системы действует дельта импульс k, то выходная импульсная реакция будет Yk = gk. Каждая система имеет единственный специфичный отклик g (рис.3.4). Таким образом, системы можно идентифицировать и можно сравнивать. Причем в пределе при  получим импульсную реакцию g(t) для аналоговой системы.

Рис.3.4

Импульсы, составляющие входной сигнал (рис.3.2), являются ненормированными с разной величиной. Поэтому для j–го импульса реакция будет Xj T0g. Вычислим суммарную реакцию Y(t) в момент времени kT0. Для этого нужно учитывать действия импульсов X0, X1,…, Xk следовавших до момента времени t = kT0. Пусть при k < 0, Y = 0, тогда

или .

Обозначим T0g = с – реакция цифровой системы, получим

.

Этой формулой (называется “свертка”) описывается нерекурсивная система. Здесь входной сигнал свертывается с импульсной реакцией. От цифровой свертки можно перейти к аналоговой при следующих преобразованиях: , , , получим  – интеграл Дюамеля.

Отметим, что cj – постоянные коэффициенты, свойственные определенной системе. По виду коэффициентов можно различать системы. Возможно второе представление для формулы “свертки”, которое получается путем замены переменной kj = n, имеем

.

С ростом k увеличивается количество слагаемых в “свертке” и таким образом требуется на каждом шаге k производить большое количество операций умножения и сложения. Практически импульсную реакцию можно считать равной нулю с требуемой точностью, начиная с некоторого шага m (рис.3.4), тогда

.

Структурная схема, реализующая цифровую систему с нерекурсивным описанием, показана на рис.3.5.

Рис.3.5


Реальные

Мысленные

Динамические

Статические

Аналоговые

Дискретные

тахостические

Детерминированные

Модели

Простые

Сложные

Линейные

Нелинейные

Натурные

Физические

Символические

Наглядные

Математические

Аналитические

Имитационные

Y

Статическая

система

 X

 Xk

 t

 X1

 X3

 0

 X0

 S=Xj T0  

 X2

 Xj

 Xk

T0

 2T0

 3T0

jT0

 (j+1)T0

kT0

 =1/T0

t

T0

kT0

T0

0

2T0

g(t)

gj

mk0

gk

t

.  .  .

 Xk-1

T0

Xk

C0

T0

 Xk-2

T0

Xk-m

C1

Cm

Умножитель

Элемент задержки на период Т0

Yк


 

А также другие работы, которые могут Вас заинтересовать

43650. Сюжетно ролевая игра как средство формирования положительного отношения к школьному обучению детей 5-6 лет 83.05 KB
  Теоретические основы формирования положительного отношения детей 56 лет к школьному обучению по средствам сюжетноролевой игры. Значение сюжетноролевой игры в процессе формирования положительного отношения детей 56 лет к школьному обучению. Опытно экспериментальная работа по формированию положительного отношения детей 56 лет к школьному обучению посредствам сюжетноролевой игры. Цель данного исследования: изучить возможности сюжетноролевой игры по формированию положительного отношения детей к школьному обучению.
43651. Зона технического обслуживания 1 ремонтно-механических мастерских дорожного ремонтно-строительного управления 151.8 KB
  Техническая характеристика машин табличная форма 2. Фактическое число часов работы машин за год 2. Корректирование трудоемкости выполнения ТО и Р машин 2. Под организацией производственной структуры системы ТО и ремонта машин понимается состав и взаимоподчиненность подразделений обеспечивающих техническую готовность машин в требуемой комплектации и в сроки заданные строительными и другими организациями.
43652. Разработка интенсивной технологии возделывания сахарной свеклы в условия КСУП «Коленское» Житковичского района Гомельской области 963.62 KB
  Важная роль в решении зернофуражной проблемы в Белоруссии, республиках Прибалтики, Нечерноземной зоны РФ, лесостепи Украины и других районах принадлежит яровому ячменю, как одной из наиболее урожайных зерновых культур.
43653. Геологические данные месторождения, его структуру и физико-химические свойства 314.92 KB
  Одной из важных задач этой проблемы является повышение фондоотдачи основных промышленнопроизводственных фондов основную долю которых в нефтяной промышленности составляют скважины: добывающие и нагнетательные. Скважина обеспечивает связь недр с земной поверхностью служит каналом доступа человека к пласту. Нормальная работа добывающих или нагнетательных скважин нарушается по различным причинам что приводит либо к полному прекращению работы скважин либо к существенному сокращению ее дебита особенно по нефти. Причины прекращения или снижения...
43654. Предложения по повышению экономической эффективности технологий управления персоналом Арт-кафе «Галерея» и оценка их эффективности 1.5 MB
  Теоретические аспекты технологий управления персоналом в ресторанно гостиничном бизнесе.Сущность технологий управления предприятиями 7 1. Особенности современных технологий управления персоналом на предприятиях ресторанно гостиничного бизнеса 22 ГЛАВА 2. Анализ технологий управления персоналом Арткафе Галерея.
43655. Сквер в ст.Старокорсунской 3.3 MB
  Назначение скверов может быть различным. Сквер, создаваемый на площадках общегородского или районного значения, а также перед отдельными крупными общественными зданиями, предназначен главным образом для кратковременного отдыха граждан.
43656. Повышение качества наплавляемой поверхности за счет повышения износостойкости применением электродуговых процессов 2.35 MB
  После этого был произведен патентный поиск для того, чтобы найти устройство реализации процесса, по которому будет разрабатываться конструкция нового оборудования для наплавки, позволяющее наиболее точно выполнить поставленную цель. Из всех найденных аналогов устройств, был выбран прототип
43657. Расчет перекрытия и стальной балки 1.03 MB
  Нагрузка на балки передаётся через стальной плоский настил. Пролёт главной балки 12 м шаг главных балок 7 м.1 Расчёт нагрузки на балки настила Нормативная нагрузка: ; 0305 кН м предварительный вес балки настила; кН м. 2 Проверяем прочность балки по касательным напряжениям: ; Rs расчётное сопротивление на срез; ; кН см2; d = 6 мм = 06 см толщина стенки двутавра; h = 270 мм = 27 см высота двутавра; ; 344 кН см2 1463 кН см2.