92197

Проверка модели на адекватность

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

В системах первого типа каналы обработки информации работают относительно независимо. При необходимости обмена информацией между каналами производится передача информации через общую память. Физическая модель системы обработки содержит к независимых каналов

Русский

2015-07-28

76.5 KB

0 чел.

20,1  Проверка модели на адекватность

Проверку выполняют по критерию Фишера, образуя статистику , где

– дисперсия неадекватности, YXi – значения, полученные по уравнению модели (уравнению регрессии) при тех же значениях входных переменных X, что и для среднеарифметического  строке i матрицы планирования, d – количество значимых коэффициентов в модели.

Если F<F , то модель адекватна. При неадекватной модели необходимо увеличить степень полинома, описывающие модель, переименовать и провести эксперимент, вычислить коэффициенты b, учитывая действия раздела 2.4.

20,2  Модели мультипроцессорных систем

Мультипроцессорные системы применяют для увеличения производительности. Используют две основные разновидности таких систем:

– с индивидуальным ОЗУ для каждого процессора

– с общим ОЗУ.

В системах первого типа каналы обработки информации работают относительно независимо. При необходимости обмена информацией между каналами производится передача информации через общую память. Физическая модель системы обработки содержит к независимых каналов (рис.4.13).

Рис.4.13

Каждый из однотипных процессоров П настроен на работу с определенной программой. При 1 = 2 = … = k = суммарная интенсивность входного потока равна А=к, загрузка одного канала  =  = /к.

На основании результатов, приведенных в разделе 4.3 для системы первого типа среднее время обработки одной заявки U=/(1–), а среднее время простаивания в очереди w = /(1–);

Рассмотрим систему второго типа. В этой системе k однотипных процессоров работают с одной ОЗУ. Память строиться по модульному принципу. В текущий момент времени произвольный процессор взаимодействует с одним модулем памяти. Это взаимодействие обеспечивает коммутатор. Достоинством подобной системы является то, что процессоры могут выполнять одинаковые функции, то есть производить обработку одинаковых программ. Заявка попавшая на вход такой системы направляется на тот процессор который не занят. Недостаток – наличие коммутатора. Модель системы показана на рис.4.14.

Рис.4.14

Время обработки заявки каждым процессором равно . Загрузка одного процессора:

.

Характеристики второй системы рассмотрены в разделе 4.4.

Среднее время обработки заявки одним процессором

,

где а среднее время стояния в очереди .

Для обеих систем при фиксированной производительности ( = const) характеристики систем улучшаются, так как параметры U и W с увеличением числа каналов уменьшаются.

Иное дело, если зафиксировать суммарную производительность системы  V=kV, где  – производительность одного процессора, t – время выполнения одной операции. Тогда время обслуживания одной заявки , здесь k – трудоемкость (количество операций) будет увеличиваться с ростом k. В этом случае выгоднее использовать один процессор с высокой производительностью.

Сравним характеристики обеих систем при одинаковых количестве процессоров и времени обслуживания заявки. Введём отношения

,

.

Зависимость U от количества процессоров k показана на рис.4.15. Из анализа кривых следует, что при любых значениях загрузки величина U лежит в пределах 1 < U < k. Следовательно, вторая система имеет преимущество перед первой.

Рис.4.15

На рис.4.16 показана зависимость W  от k

Рис.4.16

Из анализа рисунка следует, что при любых значениях и k >1, W  > k.

Таким образом, по характеристикам преимущество имеет система с общей памятью.

Всё это объясняется тем, что в первой системе каждый процессор настроен на свою программу, и заявка может стоять в очереди в канале, несмотря на то, что прочие каналы свободны. Во второй же системе все каналы одинаковы и заявка направляется в свободный процессор.


1

O1

 П1

2

2

 П2

k

Ok

 Пk

O

 П1

 П2

 Пk

k

k

k

w

 1

k

k

k

w

 1


 

А также другие работы, которые могут Вас заинтересовать

73826. Операции над матрицами 1.17 MB
  Элементами матрицы могут являться числа алгебраические символы или математические функции. Например матрицы используется для решения систем алгебраических и дифференциальных уравнений нахождения значений физических величин в квантовой теории шифрования сообщений в Интернете. Строки матрицы нумеруются сверху вниз а столбцы слева направо.
73827. Системы уравнений в линейной алгебре 467.5 KB
  Если это определение озвучить в терминах определителей то оно будет выглядеть примерно так: Матрица размера m×n имеет ранг r если существует хотя бы один отличный от нуля определитель rго порядка тогда как определитель любой подматрицы более высокого порядка равен нулю. Для вычисления ранга матрицы можно использовать метод элементарных преобразований строк и столбцов в точности тот самый метод который применяется для вычисления определителей. Целью элементарных преобразований является приведение матрицы к...
73828. Модель затраты- выпуск (модель В. Леонтьева) 121 KB
  Либо не весь объём производства расходуется на потребление и его достаточно для расширения производства тех видов продукции на которые имеется растущий спрос либо объём производства недостаточен для воспроизводства трудового ресурса на постоянном уровне. Свойство наличия баланса состоит как раз в том что полные объёмы всей продукции складываются только из объёмов её конечного потребления и объёмов потребления продукции в производственных процессах межотраслевых потоков. Примером такой взаимосвязи может служить например потребление с х...
73829. Комплексные числа 388 KB
  Определение комплексного числа. Первая компонента комплексного числа действительное число называется действительной частью числа это обозначается так; вторая компонента действительное число называется мнимой частью числа. Два комплексных числа и равны тогда и только тогда когда равны их действительные и мнимые части.
73830. Многочлены -ой степени 536.5 KB
  Многочленом ой степени называется функция где постоянные комплексные числа коэффициенты многочлена комплексная переменная. Число в котором многочлен принимает нулевое значение называется корнем многочлена. Представим в виде многочлена по степеням. Очевидно отсюда следует утверждение: для того чтобы число было корнем многочлена необходимо и достаточно чтобы коэффициент при нулевой степени в разложении по степеням был равен нулю: .
73831. Линейные пространства 451.5 KB
  Обозначим множества векторов направленных отрезков на прямой на плоскости в пространстве соответственно с обычными операциями сложения векторов и умножения векторов на число. Вместо свободных векторов можно рассмотреть соответствующие множества радиус-векторов. Например множество векторов на плоскости имеющих общее начало т. Множество радиус-векторов единичной длины не образует линейное пространство так как для любого из этих векторов сумма не принадлежит рассматриваемому множеству.
73832. Проектирование операционных технологических процессов обработки заготовок 67.5 KB
  обработки позволяет правильно выбрать станок из имеющегося парка или по каталогу. По типу обработки устанавливают группу станков: токарный сверлильный В соответствии с назначением станка его компоновкой степенью автоматизации определяют тип станка: токарный одношпиндельный многошпиндельный револьверный полуавтомат и т. Если эти требования выполнимы на различных станках то при выборе учитывают следующие факторы: 1 соответствие основных размеров станка габаритным размерам обрабатываемой заготовки или нескольких одновременно...