92207

Понятия о моделях, требования к моделям, этапы процесса моделирования

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Понятия о моделях требования к моделям этапы процесса моделирования Моделирование замещение объекта оригинала другим моделью с целью получить информацию о важных свойствах объекта оригинала. модель заменитель оригинала позволяющая изучить или фиксировать его некоторые свойства. Примеры моделей: модель самолета; модель электростанции; модель системы электронной аппаратуры принципиальная схема модель конструкции расчет надежности и др. Если результаты моделирования подтверждаются и могут служить основой для прогнозирования...

Русский

2015-07-28

62 KB

0 чел.

8.1. Понятия о моделях, требования к моделям, этапы процесса моделирования

Моделирование – замещение объекта оригинала другим (моделью), с целью получить информацию о важных свойствах объекта оригинала. Т.е. модель – заменитель оригинала, позволяющая изучить или фиксировать его некоторые свойства.

Примеры моделей:

  •  модель самолета;
  •  модель электростанции;
  •  модель системы электронной аппаратуры (принципиальная схема, модель конструкции, расчет надежности и др.).

Процесс моделирования состоит из следующих этапов:

1)постановка задачи и определение свойств оригинала подлежащих исследованию;

2)констатация затруднительности и невозможности изучения оригинала в натуре;

3)выбор модели достаточно хорошо фиксирующей существенные свойства оригинала и легко поддающейся исследованию;

4)исследование модели в соответствии с поставленной задачей;

5)перенос результатов исследования модели на оригинал;

6)проверка полученных результатов.

Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то модель является адекватной объекту. Адекватность модели зависит от цели моделирования и принятых критериев. К модели предъявляют два противоречивых требования: 

1)адекватность;

2)простота модели.

Чем проще модель, тем легче исследование и тем ниже его стоимость и время, затрачиваемое на его проведение.

Первой фазой абстрагирования объекта является качественное описание объекта (физическая модель). Например: механическая модель маятника, электрическая схема колебательного контура.

За качественным описанием модели следует вторая стадия абстрагирования – количественное описание модели (математическая модель). Математические модели могут быть представлены различными математическими средствами:

  •  действительными или комплексными величинами,
  •  векторами,
  •  матрицами,
  •  геометрическими образами,
  •  неравенствами,
  •  функциями и функционалами,
  •  множествами,
  •  алгебраическими, дифференциальными и интегральными уравнениями,
  •  функциями распределения вероятностей,
  •  статистиками и др.

Переход от первой ко второй фазе абстрагирования, т.е. от физической модели к математической часто освобождает модель от специфических черт присущих объекту. Лишившись физической или технической оболочки, модель приобретает универсальность, т.е. способность количественного описания различных по своей природе процессов или объектов. Примеры различных объектов с одинаковой математической моделью. Электрический колебательный контур – рис.1.1, механический маятник – рис.1.2.

Рис.1.1

Эквивалентные элементы на схемах: масса m  L (индуктивность), затухание   R (сопротивление), упругость пружины K  C (емкость), ЭДС E  F (сила).

Рис.1.2

Определим уравнение для колебательного контура. На основании закона Кирхгофа имеем:

Е(t) = UR (t) + UL (t) + UC (t).

Напряжения, действующие на элементах R, L и C по закону Ома равны:

UR (t) = R*i(t),

UL (t) = L*di(t)/dt,

.

Подставляя напряжения в уравнение Кирхгофа, получим интегрально-дифференциальное уравнение

.

Его можно преобразовать в дифференциальное

i(t) = CdUc(t)/dt = CdU(t)/dt.

Учитывая равенство, имеем

LCd2U(t)/dt + RCdU(t)/dt + U(t) = E(t).

В силу эквивалентности элементов подобным же уравнением описывается механический маятник.

8.2 Алгоритм формирования случайного процесса по заданной корреляционной функиции

Обозначим kп(j) – функция передачи формирующего фильтра. Тогда энергетический спектр на выходе фильтра будет следующим

SY() = Sx()|kп(j)|2 = Sx()kп(j)kп*(j),

где Sx() – энергетический спектр входной последовательности случайных величин X, kп*(j) – комплексно сопряжённая к kп(j) функция передачи фильтра, причем

kп(j) = |kп(j)|e j (),

kп*(j) = |kп(j)|e-j ().

Входной сигнал фильтра Х – это последовательность коротких импульсов, длительность которых равна периоду дискретизации T0, поэтому спектр такого сигнала является равномерным в области нулевых частот (рис.5.12) со значением Sx() = Sx. Следовательно, форма спектра выходного сигнала Sx() (рис.5.12) полностью определяется квадратом модуля функции передачи формирующего фильтра, то есть он «вырезает» из спектра входного сигнала требуемый спектр SY() с частотой среза с.

Рис.5.12

Так как дисперсия входного сигнала X равна  и справедливо соотношение

,

то отсюда . Тогда выходной энергетический спектр фильтра будет определяться

.

Из последнего уравнения можно найти kП (j) и тем самым определить описание фильтра. Уравнению удовлетворяют множества передаточных функций c одинаковыми амплитудо-частотными характеристиками |kП (j)| и разными фазо-частотными характеристиками (), так как

|kП(j)|2 = kП(j)kП*(j) = |kП(j)|ej()|kП(j)|e-j().

Выберем фильтр с нулевой фазо-частотной характеристикой, для которой () = 0. У такого фильтра амплитудный спектр действителен, то есть

kП(j) = kП().

На выходе фильтра формируется спектр

SY() =.

Отсюда следует, что передаточная функция фильтра равна

.

По передаточной функции фильтра можно найти его реакцию на импульсное воздействие единичной площади

.

При вычислении интеграла можно использовать таблицы обратного преобразования Фурье.


E(t)

C

R

i(t)

L

m

F(t)

ß

K

Sx()

Sy()

Sx(), Sy()

Sx

-с

с


 

А также другие работы, которые могут Вас заинтересовать

72871. Круговорот воды в природе 58.5 KB
  Вода – самый распространенный минерал на земле. Вода уникальна: может находиться в трех состояниях – газ, жидкость и твердом. Важнейшее химическое свойство воды – диссоциация, т.е. способность распадаться на ионы.
72872. Круговорот серы в природе 58 KB
  Соединения серы участвуют в биохимических процессах живой клетки в формировании химического состава. Больше всего серы накапливают моллюски. Кругооборот серы в морях происходит с помощью сульфатредуцирующих бактерий которые восстанавливают сульфаты до Н2S...
72873. Круговорот фосфора в природе 59.5 KB
  Фосфаты обладают растворимостью но не образуют газообразной формы т. фосфаты не летучи. Фосфаты потребляются растениями для синтеза органических веществ такие как аминокислоты и ферменты. При разложении растений и Животных организмов бактериями фосфаты возвращаются в почву и затем снова используются растениями и микробами.
72874. Круговорот азота в природе 61 KB
  Приблизительно 78 всего объема атмосферы приходится на долю азота. Растения усваивают ионы аммония NH4 и нитраты NO3 Для того чтобы N преобразовался в легкорастворимые соли необходимо участие азотфиксирующих бактерий или синезеленых водорослей цианобактерии.
72875. Круговорот углерода в природе 64.5 KB
  Каменный уголь содержит до 90 углерода. В форме доксида углерода он входит в состав земной атмосферы в которой на его долю приходится 0046 массы. Из углерода в биосфере создаются миллионы органических соединений.
72876. Пищевые цепи и сети 70.5 KB
  Пищевые цепи и сети. Таким образом пищевые цепи переплетаются образуя пищевые сети. Пищевые сети служат основой для построения экологических пирамид.
72877. Экологические системы. Понятия «биоценоз», «биотоп», «биогеоценоз», «экосистема». Гомеостаз экосистемы (устойчивость и стабильность) 61.5 KB
  Важнейшими показателями динамики экосистем являются устойчивость и стабильность. Иногда понятия устойчивость и стабильность рассматриваются как синонимы но тогда следует различать два вида устойчивости: резидентная устойчивость стабильность способность оставаться в устойчивом...
72878. Экология сообществ. Биоценоз. Видовая, пространственная и экологическая структуры биоценоза 61.5 KB
  Видовая пространственная и экологическая структуры биоценоза. Различают видовую пространственную и экологическую структуру биоценоза. Показателями значимости каждого отдельного вида в видовой структуре биоценоза являются: обилие вида т.
72879. Экология популяций. Ареал. Статические и динамические показатели популяции 62 KB
  Статические и динамические показатели популяции Популяция это элементарная группировка организмов определенного вида обладающая всеми необходимыми условиями для поддержания своей численности необозримо длительное время в постоянно изменяющихся условиях среды.