92258

Технология гальванического нанесения покрытий

Доклад

Производство и промышленные технологии

Сцепление металла покрытия с металлом детали обусловливается их межмолекулярньш взаимодействием. В результате покрытие физически сращивается с основным металлом настолько прочно что не отслаивается от детали даже при ее разрушении и работает как одно целое с основным металлом. Нарушение технологии подготовки уменьшает его сцепляемость и может привести к отслаиванию от детали. В процессе восстановления детали обычно шлифуют до шероховатости соответствующей 6.

Русский

2015-07-28

39.7 KB

18 чел.

Технология гальванического нанесения покрытий

Технологический процесс состоит из трех групп операций: подготовки деталей к наращиванию, нанесения покрытия и последующей обработки.

Подготовка деталей. Сцепление металла покрытия с металлом детали обусловливается их межмолекулярньш взаимодействием. Межмолекулярные силы заметно проявляются только в том случае, если расстояние между атомами составляет не более 5-10~5 мкм. Они убывают пропорционально третьей степени межатомного расстояния.

Покрываемым поверхностям придают необходимую шероховатость. С них удаляют различные загрязнения, жировые и оксидные пленки. Металл осаждается на активном чистом катоде, свободном от чужеродных частиц. В результате покрытие физически сращивается с основным металлом настолько прочно, что не отслаивается от детали даже при ее разрушении, и работает как одно целое с основным металлом. Нарушение технологии подготовки уменьшает его сцепляемость и может привести к отслаиванию от детали.

Механическая обработка предназначена для удаления с покрываемой поверхности следов износа и придания ей требуемой шероховатости. В процессе восстановления детали обычно шлифуют до шероховатости, соответствующей 6...7-му классу, или зачищают шкуркой (при небольших равномерных износах),

Промывка органическим растворителем (бензином, керосином и др.) применяется тогда, когда необходимо дополнительно очистить деталь от грязи и масла, скопившихся в углублениях отверстиях и т. д.

Изоляция поверхностей деталей не подлежащих покрытию, токонепроводящими материалами позволяет сохранить геометрические размеры поверхностей, предотвращает потери электроэнергии и металла. Ее выполняют с помощью постоянных изоляторов (коробки, трубки, шайбы и т. д.) или изоляционных материалов (тонкой резины, листового целлулоида, изоляционной ленты, пленочных полимерных материалов, церезина, пластизоля и др.).

Монтаж деталей на подвески выполняют при их завешивании в ванну с электролитом. Конструкция подвески должна со-

Обезжириванием удаляют жировые загрязнения. Этот процесс основан на том, что животные и растительные жиры под воздействием горячей щелочи разрушаются и образуют мыло (омыляются) которое легко смывается горячей водой. Минеральные неомыляемые жиры, например смазочные масла, под воздействием щелочи образуют эмульсии,

Сплошная пленка разрывается, и масло собирается в отдельные капли, которые отделяются от деталей и остаются в растворе в мелкораздробленном взвешенном состоянии. Для облегчения эмульгирования в щелочный раствор вводят специальные вещества, называемые эмульгаторами. К ним относятся: жидкое (растворимое) стекло, поверхностноактив-вещества (ПАВ) и др.

Обезжиривание в щелочных растворах можно проводить химическим и электрохимическим - методами. При химическом — детали погружают в горячий щелочной раствор и выдерживают в определенное время.

Травлением удаляют оксидные пленки и дефектный слой с покрываемых поверхностей, выявляют кристаллическую структуру и повышение активности металла. Его проводят химическим и электрохимическим методами.

Химическое травление черных металлов выполняют в водном растворе серной или соляной кислоты или в их смесях. Обычно применяют 15...25%-ный раствор серной или 10... 20%-ный раствор соляной кислоты. При травлении в растворе серной кислоты его часто нагревают до 50...60°С. Продолжительность процесса (30 мин и более) зависит от состояния поверхности детали, концентрации и температуры раствора.

На ремонтных предприятиях этот способ чаще всего служит при подготовке метизов и других мелких деталей к цинкованию и очистке наплавочной проволоки от ржавчины.

Обработка деталей после покрытия. После нанесения покрытия детали промывают водой и подвергают нейтрализации в щелочных растворах для удаления следов электролитов и предупреждения коррозии. Например, после хромирования их нейтрализуют в растворе кальцинированной соды (20 ... 70 г/л) при 15...30°С в течение 15... 30 с. Особенно тщательно необходимо обрабатывать детали, покрываемые в хлористых электролитах, так как оставшиеся ионы хлора вызывают интенсивную коррозию покрытия во влажной атмосфере. Для этого их промывают и нейтрализуют в 10%-ном растворе щелочи при температуре 60...80°С в течение 5..-. 10 мин.

Чтобы повысить коррозионную стойкость покрытий, необходимо их пассивировать, обрабатывая в растворах хромовой кислоты или ее солей. В результате на поверхности цинка образуется хроматная пленка радужных оттенков (от светло-желтого до розового и фиолетового).

Перед пассивированием покрытия обычно осветляют в растворе азотной кислоты (20...30 г/л) в течение 6... 18 с. Затем их пассивируют в растворе, содержащем 150. «.200 г/л двухромовокислого натрия (или калия) и 8... 12 г/л серной кислоты, в течение 6... 18 с. Одновременно можно осветлять и пассивировать в растворе, состоящем из 80... 110 г/л хромового ангидрида и 3... 5 г/л серной кислоты, в течение 3... 6 с. Температура всех растворов 15...30°С.

Термическая обработка служит для сушки или улучшения свойств покрытий. Детали сушат в сушильном шкафу при 50... 100°С в течение 5... 10 мин. Температура сушки оцинкованных деталей после пассивирования не должна превышать 50... 60 °С.

При электролизе выделяется водород, который внедряется в покрытие, что увеличивает хрупкость, снижает усталостную прочность детали и сцепляемость покрытия. Поэтому ответственные хромированные детали, работающие при больших динамических нагрузках или же требующие повышенной точности и стабильности размеров (плунжерные пары), обезводораживают, нагревая их при температуре 180...230 °С в течение 2... 3 ч.

При механической обработке мягкие покрытия точат, а твердые — шлифуют или хонингуют.

Наилучшие результаты при точении железных покрытий достигаются за счет применения сверхтвердого инструментального материала гексанита - Р. Режим резания: скорость 80.... 120 м/мин, подача 0,02… 0,08 мм/об и глубина ОД... 0,3 мм. Геометрия резца: передний угол 2... 6°, главный угол в плане 45 ... 60°, вспомогательный угол в плане 10... 15 и задний — 7... 10°; радиус закругления вершины 0,2... 0,8 мм.

Детали восстановленные железнением и хромированием» рекомендуется шлифовать электрокорундовыми кругами (24А25СМ2К и 34А40СМ2К) на керамической связке зернистостостью 25... 40 среднемягкой твердости. Скорости вращения круга и детали соответственно 25... 35 м/с и 25... 60 м/мин, глубина шлифования (поперечная подача) до 0,012 мм, продольная подача 0,1 ...0,3 ширины круга, обильное охлаждение не менее 10 л/мин.


 

А также другие работы, которые могут Вас заинтересовать

24511. Реализация (создание) процессов и потоков 14.71 KB
  Одной из основных подсистем мультипрограммной ОС является подсистема управления процессами и потоками которая занимается их созданием и уничтожением поддерживает взаимодействие между ними а также распределяет процессорное время и другие ресурсы между одновременно существующими процессами и потоками. Подсистема управления процессами взаимодействует с другими подсистемами ОС ответственными за управление ресурсами: подсистемой управления памятью подсистемой вводавывода файловой системой. Создать процесс значит создать дескриптор...
24512. Планирование и диспетчеризация процессов и потоков. Вытесняющие и невытесняющие алгоритмы планирования 26.96 KB
  Планирование и диспетчеризация процессов и потоков.Планирование и диспетчеризация потоков На протяжении существования процесса выполнение его потоков может быть многократно прервано и продолжено. Планирование потоков включает в себя решение двух задач: определение момента времени для смены текущего активного потока; выбор для выполнения потока из очереди готовых потоков. Существует множество различных алгоритмов планирования потоков посвоему решающих каждую из приведенных выше задач.
24513. Алгоритмы планирования, основанные на квантовании, приоритетах, смешанные алгоритмы 92.27 KB
  В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени квант. Смена активного потока происходит в следующих случаях: поток завершился и покинул систему; произошла ошибка; поток перешел в состояние ожидания; исчерпан квант процессорного времени отведенный данному потоку. Поток который исчерпал свой квант переводится в состояние готовность и ожидает когда ему будет предоставлен новый квант процессорного времени а на выполнение в...
24514. Планирование в системах реального времени 20.19 KB
  Планирование облегчается тем что в системах реального времени весь набор выполняемых задач известен заранее часто также известно времени выполнения задач моменты активизации и т. Если нарушение сроков выполнения задач не допустимо то система реального времени считается жесткой система управления ракетой или атомной электростанцией система обработки цифрового сигнала при воспроизведении оптического диска. Для периодической задачи все будущие моменты запроса можно определить заранее путем прибавления к моменту начального запроса величины...
24515. Мультипрограммирование на основе прерываний. Механизм прерываний 25.58 KB
  Мультипрограммирование на основе прерываний. Механизм прерываний.Мультипрограммирование на основе прерываний. Назначение и типы прерываний.
24516. Необходимость синхронизации процессов и потоков. Критическая секция 19.14 KB
  Необходимость синхронизации процессов и потоков.4 Синхронизация процессов и потоков. В многозадачной ОС синхронизация процессов и потоков необходима для исключения конфликтных ситуаций при обмене данными между ними разделении данных доступе к процессору и устройствам вводавывода. Пренебрежение вопросами синхронизации процессов выполняющихся в многозадачной системе может привести к неправильной их работе или даже к краху системы.
24517. Способы реализации взаимных исключений путем запрещения прерываний, использования блокирующих переменных, системных вызовов 103.83 KB
  Поток при входе в критическую секцию запрещает все прерывания а при выходе из критической секции снова их разрешает. Это самый простой но и самый неэффективный способ так как опасно доверять управление системой пользовательскому потоку который может надолго занять процессор а при крахе потока в критической области крах потерпит вся система потому что прерывания никогда не будут разрешены. Для синхронизации потоков одного процесса программист может использовать глобальные блокирующие переменные к которым все потоки процесса имеют прямой...