92305

Проектирование металлической балочной клетки

Дипломная

Производство и промышленные технологии

В зависимости от расположения в пространстве, цилиндрические резервуары делятся на вертикальные и горизонтальные. Горизонтальные цилиндрические резервуары используются для хранения нефти и нефтепродуктов, как под давлением (до 70 кПа 7000 мм вод. столба), так и без него. Резервуары имеют простую форму

Русский

2015-07-29

1.34 MB

0 чел.

      Предмет: «Расчет и проектирование сварочных конструкций»                  

      Тема: «Проектирование металлической балочной клетки»


     Содержание

1. Введение

2.1 Классификация и назначение резервуаров

     2.2  Материал изделия

     2.3  Выбор и обоснование способа сварки

     3.1  Расчет режимов  сварки

     3.2  Контроль качества сварных соединений

     3.3  Методы борьбы со сварочными  деформациями

     3.4  Безопасность жизнедеятельности

      4.  Организационно-экономический раздел

  5.  Выводы

6.  Литература


Введение:

                На сегодняшний день практически ни одно крупное предприятие не может обойтись без использования промышленных емкостей, баков, резервуаров и специальных хранилищ. Большинство емкостей изготавливается из нержавеющей стали, так как этот материал отвечает всем требованиям по безопасности и надежному хранению. Выбор марки стали осуществляется, исходя из целевых задач, которые будет выполнять резервуар и климатической зоны, в которой он будет эксплуатироваться. Для того чтобы емкость отвечала всем требованиям, требуется квалифицированный подход опытных специалистов. Во время производства следует соблюдать все параметры, нормы и ГОСТы, которые регламентируют процессы проектирования и производства резервуаров. При проектировании следует учитывать и дополнительное оборудование, которые используется для контроля и обеспечения безопасности. Рассмотрим цилиндрические резервуары:

 В зависимости от расположения в пространстве, цилиндрические резервуары делятся на вертикальные и горизонтальные. Горизонтальные цилиндрические резервуары используются для хранения нефти и нефтепродуктов, как под давлением (до 70 кПа 7000 мм вод. столба), так и без него. Резервуары имеют простую форму, удобно при транспортировке по железной дороге, но ограничивает диаметр до 3,25 м. В отдельных случаях диаметр резервуара может доходить до 4,0 м. Наиболее распространенные резервуары объемом 5, 10, 25, 50, 75 и 100 м3. Горизонтальные резервуары могут быть надземного и подземного расположения.

 В дипломном проекте мы рассмотрим вертикальные  резервуары объемом до 50000 м3.  На рис.1 представлена нефтебаза с резервуарами емкостью от 1000 до 50000 м3.

Рис.1. Резервуары цилиндрические, вертикальные, предназначенные для хранения воды, нефтепродуктов, химических продуктов.

Резервуары в основном выполняются методом рулонирования, но существует еще один способ – полистовой, который используется при постройке резервуаров размером 50000 м3  и более. Первый способ осуществляется непосредственно на монтаже, второй – в два этапа. Вначале на заводе свариваются монтажные заготовки дна, образующей и крыши. После чего эти элементы рулонируют и перевозят на место монтажа. Там производят сборку и сварку.

Задачи проекта:

Выбор способов сварки;

Выбор оборудования ;

Выбор материалов;

Назначение методов контроля качества;

Организация испытаний готовых изделий;

Организация безопасной жизнедеятельности при изготовлении и монтаже;

Расчет технико-экономической эффективности проекта.

1.Классификации и назначение резервуаров

По конструктивным особенностям резервуары подразделяются на следующие типы:

- со стационарной крышей без понтона (РВС);

- со стационарной крышей и понтоном (РВСП);

- с плавающей крышей (РВСПК). Резервуары (РВС) с плавающей крышей используют для хранения нефтепродуктов (нефть, бензины, керосины, реактивное топливо) с давлением насыщенных паров (ДНП) от 26,6 кПа до 93,3 кПа и температурой воспламенения менее 61° С. Плавающие крыши применяются в резервуарах без стационарной крыши в районах с нормативной снеговой нагрузкой до 1,5 кПа.

       Выбор типа резервуара осуществляется в зависимости от классификации хранимого продукта по температуре вспышки и давлению насыщенных паров при температуре хранения:

а) для ЛВЖ при давлении насыщенных паров свыше 26,6 кПа (200 мм рт. ст.) до 93,3 кПа (700 мм рт. ст.) (нефть, бензины, авиакеросин, реактивное топливо) применяются:

- резервуары с плавающей крышей;

- резервуары со стационарной крышей и понтоном;

- резервуары со стационарной крышей без понтона, оборудованные газовой обвязкой (ГО) или установкой улавливания легких фракций (УЛФ);

б) для ЛВЖ при давлении насыщенных паров менее 26,6 кПа (200 мм рт. ст.), а также для ГЖ с температурой вспышки выше 61°С (мазут, дизельное топливо, бытовой керосин, битум, гудрон, масла, пластовая вода) применяются резервуары со стационарной крышей без понтона, ГО и УФЛ.

       В зависимости от номинального объема резервуары рекомендуется подразделять на четыре класса опасности:

класс I - резервуары номинальным объемом более 50000 *;

класс II - резервуары номинальным объемом от 20000 до 50000 * включительно, а также резервуары номинальным объемом от 10000 до 50000 * включительно, расположенные непосредственно по берегам рек, крупных водоемов и в черте городской застройки;

класс III - резервуары номинальным объемом от 1000 и менее 20000 *;

класс IV - резервуары номинальным объемом менее 1000 *.

________________________________________________________________________________________________

*При проектировании класс опасности рекомендуется учитывать при назначении специальных требований в рабочей документации к материалам и объемам контроля, коэффициента надежности по назначению и выборе методов расчета.

 

В дипломном проекте необходимо разработать технологию  приварки люка к стенке цилиндрического резервуара. На рис.2, 3 представлены чертежи люка приваренного к стенке резервуара.

1. Края отверстий, вырезанных в стенке резервуара, для люка должны быть очищены и не иметь шероховатостей, превышающих 1 мм, а для конструкций возводимых или эксплуатируемых в районах с расчетной температурой ниже - 40 °С - 0,5 мм.

2. Отверстие  для установки люка должно быть усиленно накладкой (воротником), расположенным по периметру отверстия.

- Минимальная площадь поперечного сечения накладки (в вертикальном направлении, совпадающем с диаметром отверстия), должна быть не менее произведения величины диаметра отверстия на толщину листа стенки резервуара. Рекомендуется выбирать толщину накладки, равную толщине стенки.

-  Усиление стенки в зоне врезки может не производиться в случае применения в данной зоне стенки вставок - листов большей толщины, которая определяется соответствующим расчетом.

3. Прочность материала накладки предпочтительно должна быть такой же, как и у материала стенки. Допустимо применение материала накладки с характеристиками прочности до 80 % основного металла стенки при условии сохранения эффективности усиления. Использование материала для накладок с прочностью большей, чем у материала стенки не должно учитываться в запас прочности.

4. Катет (К) сплошных угловых швов крепления накладки к стенке резервуара в зоне люка должен быть равен толщине стенки при t = 4 ÷ 6 мм; k = t - 1 мм при t = 7 ÷ 10 мм; k = t - 2 м при t = 11 ÷ 15 мм; k = t - 3 мм при t = 16 ÷ 22 мм; k = t - 4 мм при t ≥ 23 мм.

Усиливающая накладка должна иметь контрольное отверстие М 10,

раззенкованное с обратной стороны и расположенное на горизонтальной оси люка

       II. МАТЕРИАЛЫ

Стали, используемые в конструкциях резервуаров, должны удовлетворять стандартам и техническим условиям, а также требованиям настоящих Правил.

2.1. Общие требования к материалам

2.1.1. Все элементы конструкций по требованиям к материалам разделяются на две группы:

основные конструкции:

подгруппа А - стенка, привариваемые к стенке листы днища или кольцевые окрайки, обечайки люков и патрубков в стенке и фланцы к ним, привариваемые к стенке усиливающие накладки, опорное (верхнее) кольцо жесткости;

подгруппа Б - центральная часть днища, анкерные крепления, каркас крыши (включая фасонки), настил крыши, самонесущие конические крыши, плавающие крыши, промежуточные кольца жесткости, оболочки люков и патрубков на крыше;

вспомогательные конструкции: лестницы, площадки, ограждения и др.

2.1.2. Для конструкций резервуаров должна применяться сталь, выплавленная электропечным, кислородно-конвертерным или мартеновским способом. В зависимости от требуемых показателей качества и толщины проката сталь должна поставляться в состоянии после горячей прокатки, термической обработки (нормализации или закалки с отпуском) или после контролируемой прокатки.

2.1.3. Для основных конструкций подгруппы А должна применяться только спокойная (полностью раскисленная) сталь. Классы прочности поставляемой углеродистой, низкоуглеродистой и низколегированной стали для изготовления конструкций указанной подгруппы должны соответствовать табл. 2.1. Для основных конструкций подгруппы Б должна применяться спокойная или полуспокойная сталь.

Для вспомогательных конструкций наряду с выше перечисленными сталями с учетом температурных условий эксплуатации возможно применение стали С235.

2.2. Химический состав и свариваемость

2.2.1. При сварке плавлением качество сварочных материалов и технология сварки должны обеспечивать прочность и вязкость металла сварного соединения не ниже, чем требуется для исходного основного металла.

2.2.2. Углеродный эквивалент стали с пределом текучести 390 МПа и ниже для основных элементов конструкций не должен превышать 0,43. Расчет углеродного эквивалента производится по формуле

где С, Mn, Si, Cr, Ni, Cu, V, Р - массовые доли углерода, марганца, кремния, хрома, никеля, меди, ванадия и фосфора по результатам плавочного анализа (ковшовой пробы).

Таблица 2.1

Класс прочности

Минимальная температура, при которой гарантируется ударная вязкость, °С

+ 10

0

- 10

- 15

- 20

- 30

- 35

- 40

- 60

255

С 255 (ВСт3сп) 20,1-40 мм**

С 255 (ВСт3сп) 10,1-20 мм

С 255 (ВСт3сп) 4-10 мм

 

 

 

 

 

 

315*

 

 

С 315 40,1-50 мм

С 315 20,1-40 мм

С 315
4-20 мм

 

 

 

 

345

 

 

 

 

С 345 (09Г2С) 40,1-50 мм

С 345 (09Г2С) 20,1-40 мм

С 345 (09Г2С) 10,1-20 мм

С 345 (09Г2С) 4-10 мм

 

 

 

 

 

 

 

 

(09Г2-У) 8-32 мм

 

 

 

 

 

 

 

 

 

(08ГНБ) 8-25 мм

390

 

 

 

 

 

 

 

(10Г2ФБ) 4-28 мм

 

 

 

 

 

 

 

 

(09ГБЮ) 4-12 мм

 

440

 

 

 

 

(10Г2СБ) 8-25 мм

 

 

 

 

 

 

 

 

 

08Г2БТ-У, 08Г2Б-У
8-16 мм

 

 

 

590

 

 

 

 

 

 

 

С590к (12ГН2М ФАЮ) 10-40 мм

 

 

 

 

 

 

 

 

 

(12ГН2М ФАЮ-У) 10-40 мм

* Прокат из стали, микролегированной титаном, поставляется в горячекатаном или термообработанном состоянии; из стали, микролегированной ванадием (0,020 ÷ 0,060 %), поставляется после термообработки или контролируемой прокатки.

** Здесь и далее форма записи соответствует условию: свыше 20 до 40 мм.

При отсутствии в сертификатах на сталь сведений о содержании меди и ванадия расчет углеродного эквивалента производится из условия содержания в прокате меди и ванадия в количестве 0,30 и 0,01 % по массе соответственно.

2.3. Сортамент листов

2.3.1. Листовая сталь изготовляется толщиной 4 ÷ 50 мм, шириной 1500 ÷ 3000 мм, длиной 6000 ÷ 12000 мм с обрезными кромками. Сталь должна поставляться с симметричным расположением поля допуска по толщине либо с несимметричным расположением поля допуска по толщине, но имеющим постоянное предельное нижнее отклонение, равное 0,3 мм.

2.3.2. По точности изготовления листовой прокат должен применяться:

- по толщине: ВТ - высокая, AT - повышенная;

- по ширине: АШ - повышенная, БШ - нормальная;

- по плоскостности: ПО - особо высокая, ПВ - высокая.

Соответствующие предельные отклонения по толщине и ширине листов приводятся в табл. 2.22.3 и 2.4.

Серповидность (СП) листов должна быть пониженной и на базе 1 м не должна превышать 2 мм.

Требования к точности по длине, нормы плоскостности должны соответствовать требованиям стандартов.

Таблица 2.2

Толщина, мм

Предельные отклонения по толщине листов для симметричного поля допусков при точности ВТ и AT при ширине, мм

1500

Св. 1500 до 2000

Св. 2000 до 3000

ВТ

AT

ВТ

AT

ВТ

AT

От 5 до 10 вкл.

± 0,4

± 0,45

± 0,45

± 0,5

± 0,5

± 0,55

Св. 10 до 20 вкл.

± 0,4

± 0,45

± 0,45

± 0,5

± 0,55

± 0,6

Св. 20 до 30 вкл.

± 0,4

+0,5

± 0,5

± 0,6

± 0,6

± 0,7

Св. 30 до 45 вкл.

 

± 0,6

 

± 0,7

 

± 0,9

Таблица 2.3

Толщина, мм

Предельные отклонения по толщине листов для симметричного поля допусков при точности ВТ и AT при ширине, мм

1500

Св. 1500 до 2000

Св. 2000 до 3000

ВТ

AT

ВТ

AT

ВТ

AT

От 5 до 10 вкл.

+ 0,5
- 0,3

+ 0,6
- 0,3

+ 0,6
- 0,3

+ 0,7
- 0,3

+ 0,7
- 0,3

+ 0,8
- 0,3

Св. 10 до 20 вкл.

+ 0,5
- 0,3

+ 0,6
- 0,3

+ 0,6
- 0,3

+ 0,7
- 0,3

+ 0,8
- 0,3

+ 1,0
- 0,3

Св. 20 до 30 вкл.

+ 0,5
- 0,3

+ 0,7
- 0,3

+ 0,7
- 0,3

+ 0,9
- 0,3

+ 0,9
- 0,3

+ 1,1
- 0,3

Св. 30 до 45 вкл.

+ 0,7
- 0,3

+ 0,9
- 0,3

+ 0,9
- 0,3

+ 1,1
- 0,3

+ 1,1
- 0,3

+ 1,5
- 0,3

Таблица 2.4

Толщина, мм

Предельные отклонения по ширине при точности АШ и БШ и ширине листа, мм

менее 2000

2000 и более

повышенная АШ

нормальная БШ

повышенная АШ

нормальная БШ

До 16 вкл.

10

15

15

20

Св. 16 до 45 вкл.

15

25

20

25

2.3.3. Для резервуаров, возводимых на территории Российской Федерации, по согласию заказчика допускается поставка листового проката по точности его изготовления с предельными отклонениями по толщине и ширине листов в соответствии с обозначениями и требованиями действующих стандартов.

2.4. Расчетная температура металла

2.4.1. За расчетную температуру металла принимается наиболее низкое из двух следующих значений:

- минимальная температура складируемого продукта;

- температура наиболее холодных суток для данной местности (минимальная среднесуточная температура), повышенная на 5 °С.

При определении расчетной температуры металла не учитываются температурные эффекты специального обогрева и теплоизоляции резервуаров.

2.4.2. Температура наиболее холодных суток для данной местности определяется с обеспеченностью 0,98 по таблице температур наружного воздуха в соответствии с требованиями строительных норм и правил.

2.4.3. Для резервуаров с рулонной технологией сборки расчетная температура металла, принимаемая по п. 2.4.1, при толщинах более 10 мм понижается на 5 °С.

2.5. Рекомендуемые стали

2.5.1. Выбор марки стали для основных элементов конструкций должен производиться с учетом требуемых класса прочности (гарантированного минимального предела текучести), ударной вязкости, толщины проката. В табл. 2.1. приводятся рекомендуемые марки листовой стали, различающиеся по классу прочности, требованиям к ударной вязкости с указанием используемых толщин. В этой же таблице указаны технические условия, по которым поставляется сталь. В табл. 2.5приводятся требования к химическому составу, а в табл. 2.6 - к механическим свойствам стали.

2.5.2. По требованию заказчика допускается применять для конструкций резервуаров стали по международным стандартам и национальным стандартам других стран. При этом требования к характеристикам и качеству стали не должны быть ниже соответствующих требований к отечественным сталям, рекомендованным настоящими Правилами.

2.1. Материал изделия

Для вспомогательных конструкций наряду с выше перечисленными сталями с учетом температурных условий эксплуатации возможно применение стали С235.

Характеристика материала С235

     Марка :

С235

     Заменитель:

Ст3кп2

     Классификация :

Сталь для строительных конструкций

     Применение:

изготовления проката, предназначенного для строительных        ста конструкций со сварными и другими соединениями


Химический состав в % материала С235

C

Si

Mn

Ni

S

P

Cr

N

Cu

до   0.22

до   0.05

до   0.6

до   0.3

до   0.05

до   0.04

до   0.3

до   0.012

до   0.3


Технологические свойства материала С235

  Свариваемость:

без ограничений.

КОНСТРУКЦИЯ РЕЗЕРВУАРОВ

3.1. Сварные соединения и швы

3.1.1. Термины и определения сварных соединений принимать в соответствии с нормативными документами на сварку.

3.1.1.1. Стыковое соединение - сварное соединение двух элементов, примыкающих друг к другу торцевыми поверхностями.

3.1.1.2. Угловое соединение - сварное соединение двух элементов, расположенных под углом и сваренных в месте их примыкания.

3.1.1.3. Нахлесточное соединение - сварное соединение двух элементов, расположенных параллельно и частично перекрывающих друг друга.

3.1.1.4. Тавровое соединение - сварное соединение, в котором торец одного элемента приварен под прямым углом к боковой поверхности другого элемента.

3.1.2. Термины и определения сварных швов.

3.1.2.1. Стыковой шов - сварной шов стыкового соединения с различной разделкой кромок: прямоугольной, Х-образной, К-образной, V-образной.

3.1.2.2. Угловой шов - сварной шов углового, нахлесточного или таврового соединения.

3.1.2.3. Типы сварных швов:

непрерывный шов - сварной шов без промежутков по длине;

прерывистый шов - сварной шов с промежутками по длине, участки шва должны быть не менее 50 мм;

прихватки, выполняемые для фиксации взаимного расположения свариваемых элементов.

3.1.3. Конструктивные элементы сварных соединений и швов, как правило, должны соответствовать требованиям стандартов на применяемый вид сварки:

для ручной дуговой сварки;

для автоматической и полуавтоматической сварки под флюсом;

для дуговой сварки в среде защитных газов.

3.1.4. Общие требования к сварным соединениям

3.1.4.1. Сварные швы соединений должны быть плотнопрочными и соответствовать основному металлу по показателям стандартных механических свойств металла шва: пределу текучести, временному сопротивлению, относительному удлинению, ударной вязкости, углу загиба.

3.1.4.2. Для улучшения коррозионной стойкости металл шва и основной металл по химическому составу должны быть близки друг к другу.

3.1.4.3. Технологию сварки следует выбирать таким образом, чтобы избежать возникновения значительных сварочных деформаций и перемещений элементов конструкций.

3.1.5. Ограничения на сварные соединения и швы

3.1.5.1. Прихватки не рассчитываются на силовые воздействия.

3.1.5.2. Стыковые соединения деталей неодинаковой толщины при разнице, не превышающей значений, указанных в табл. 3.1, могут выполняться так же, как и деталей одинаковой толщины; конструктивные элементы разделки кромок и размеры сварочного шва следует выбирать по большей толщине.

Таблица 3.1

Толщина тонкой детали, мм

Допускаемая разница толщины, мм

до 4

1

свыше 4 до 20

2

свыше 20 до 30

3

свыше 30

4

При разности в толщине свариваемых деталей выше значений, указанных в табл. 3.1, на детали, имеющей большую толщину, должен быть сделан скос под углом 15 ° с одной или с двух сторон до толщины тонкой детали. При этом конструкцию разделки кромок и размеры сварного шва следует выбирать по меньшей толщине.

3.1.5.3. Не допускается смещение свариваемых кромок более:

а) 1,0 мм - для деталей толщиной t = 4 ÷ 10 мм;

б) 0,1 t - для деталей толщиной t = 10 - 40 мм, но не более 3 мм.

3.1.5.4. Максимальные катеты угловых сварных швов не должны превышать 1,2 толщины более тонкой детали в соединении.

3.1.5.5. Для деталей толщиной 4 - 5 мм катет углового сварного шва должен быть равен 4 мм.

Для деталей большей толщины катет углового шва определяется расчетом или конструктивно, но должен быть не менее 5 мм.

3.1.5.6. Заводские сварные соединения рулонных заготовок выполняются встык.

3.1.5.7. Нахлесточное соединение со сваркой с одной стороны допускается при сборке днища и крыши из рулонных заготовок с величиной нахлестки не менее 30 мм. При полистовой сборке днищ и крыш допускаются сварные соединения листов встык на подкладке и нахлесточные соединения с величиной нахлестки 5 t, но не менее 30 мм.

3.2. Применяемые соединения

3.2.1. Вертикальные соединения стенки.

Вертикальные соединения стенки должны быть стыковыми с полным проплавлением по толщине листов (рис. 3.1).

Рис. 3.1. Вертикальные стыковые соединения стенки:

а - без разделки кромок; б - со скосом двух кромок; в - с двумя скосами кромок; г - с криволинейным скосом кромок.

Вертикальные соединения листов в прилегающих поясах стенки должны быть смещены относительно друг друга на расстояние не менее 8 t, где t - наибольшая из толщин листов прилегающих поясов.

Для резервуаров II и III класса при изготовлении стенки из рулонных полотнищ допускаются вертикальные заводские и монтажные стыковые соединения без смещения.

Расстояния между швами патрубков, усиливающих листов и швами стенки должны быть не менее: до вертикальных швов - 250 мм, до горизонтальных швов - 100 мм.

Вертикальные соединения первого пояса стенки должны располагаться на расстоянии не менее 100 мм от стыков окраек днища.

3.2.2 Горизонтальные соединения стенки.

Горизонтальные соединения листов должны выполняться двусторонними стыковыми швами с полным проплавлением (рис. 3.2).

Рис. 3.2 Горизонтальные стыковые соединения стенки:

а) без разделки кромок; б) с криволинейным скосом одной кромки верхнего листа; в) с двумя скосами одной кромки верхнего листа.

Листы вышележащего пояса должны располагаться в пределах толщины листа нижележащего пояса. Взаимное расположение листов соседних поясов устанавливается проектом.

3.2.3. Соединения днища.

3.2.3.1. Стыковые соединения применяются при заводском изготовлении рулонируемых полотнищ днищ. Стыковые соединения на остающейся подкладке применяются для сварки кольцевых окраек, а также при полистовой сборке центральной части днищ.

3.2.3.2. Нахлесточные соединения днища применяются для соединения между собой рулонируемых полотнищ днищ, листов центральной части днищ при их полистовой сборке, а также для соединения центральной части днищ с кольцевыми окрайками (рис. 3.33.43.5).

Рис. 3.3. Соединения полотнищ днища.

Рис. 3.4. Соединение листов центральной части днища.

Рис. 3.5. Соединение центральной части с окрайками днища.

3.2.4. Соединение днища со стенкой.

Для соединения днища со стенкой применяется тавровое соединение. Для резервуаров с толщиной листов нижнего пояса стенки 20 мм и менее рекомендуется тавровое сварное соединение без разделки кромок (рис 3.6, а). Размер катета каждого углового шва должен быть не более 12 мм и не менее номинальной толщины окрайки.

Для резервуаров с толщиной листов нижнего пояса стенки более 20 мм должно применяться тавровое сварное соединение с разделкой кромок, представленное на рис. 3.6, б. Сварные швы должны выполняться, как минимум, в два прохода.

Рис. 3.6. Соединение днища со стенкой.

3.3. Исходные данные для проектирования

3.3.1. Общие положения:

- расположение резервуаров - наземное на специально устроенном основании, выполненном по заданию заказчика;

- геометрические параметры - с учетом строительных норм и правил, требований противопожарных норм и с учетом геологических изысканий площадки строительства (в приложении 1 приведены основные параметры резервуаров объемом от 100 до 50000 м3, которые предпочтительно применять в соответствии с требованиями настоящего документа);

метод изготовления (полистовое или рулонное исполнение) - задает заказчик.

3.3.2. Данные, представляемые заказчиком:

геометрические параметры или объем резервуара;

тип резервуара: со стационарной крышей (с понтоном или без понтона), с плавающей крышей и другие конструктивные особенности;

район строительства;

наименование хранимого продукта с указанием наличия вредных примесей в продукте (содержание серы, сульфидов водорода и т.д.) для обеспечения необходимых мероприятий;

удельный вес продукта;

максимальная и минимальная температура продукта;

избыточное давление и относительное разрежение;

нагрузка от теплоизоляции;

схема расположения и нагрузки от технологического оборудования;

потребность в зачистных люках и зумпфах;

оборачиваемость продукта (изменение уровня налива продукта во времени);

уровень подтоварной воды;

срок службы резервуара;

припуск на коррозию элементов резервуара.

Данные должны быть согласованы заказчиком и проектировщиком.

3.3.3. При отсутствии полного задания следует руководствоваться п. 1.4 настоящих Правил.

3.4. Конструкция днища

3.4.1. Днища резервуаров могут быть плоскими или коническим с уклоном от центра или к центру (рекомендуемая величина уклона 1 : 100).

3.4.2. Все листы днища резервуаров объемом 1000 м3 и менее должны иметь номинальную толщину не менее 4 мм, исключая припуск на коррозию.

Днища резервуаров объемом от 2000 м3 и более должны иметь центральную часть и утолщенные кольцевые окрайки. Все листы центральной части днища указанных резервуаров должны иметь номинальную толщину не менее 4 мм, исключая припуск на коррозию.

3.4.3. Кольцо из листов окраек должно быть круговой формы с внешней стороны, внутренняя граница окраек может иметь форму правильного многоугольника с числом сторон, равным числу листов окрайки. Радиальная ширина окрайки должна обеспечивать расстояние между внутренней поверхностью стенки и швом приварки центральной части днища не менее 300 мм.

Толщина кольцевых окраек должна быть не менее величин, приведенных в табл. 3.2.

Таблица 3.2

Толщина нижнего пояса стенки резервуара, мм

Минимальная толщина кольцевой окрайки, мм

До 7 вкл.

6

8 - 11 вкл.

7

12 - 16 вкл.

9

17 - 20 вкл.

12

20 - 26 вкл.

14

Свыше 26

16

3.4.4. Кольцевые окрайки собираются между собой с клиновидным зазором и свариваются между собой односторонними стыковыми швами на остающейся подкладке (см. рис. 3.5).

3.4.5. Центральная часть днища может быть выполнена как в полистовом, так и в рулонном исполнении. Рулонные полотнища изготовляются на заводе из листов, сваренных встык.

При монтаже центральной части днища полистовым методом применяются нахлесточные и стыковые соединения на остающейся подкладке (см. рис. 3.4).

Нахлесточные соединения днищ свариваются угловым швом только с верхней стороны (см. рис. 3.3).

В зоне пересечения нахлесточного соединения днища с нижним поясом стенки должна быть образована ровная поверхность (см. рис. 3.5).

2.11. Сварочные материалы

Сварочные материалы (электроды, сварочная проволока, флюсы, защитные газы) должны выбираться в соответствии с требованиями технологического процесса изготовления и монтажа конструкций и выбранных марок стали. При этом применяемые сварочные материалы и технология сварки должны обеспечивать механические свойства сварного шва не ниже свойств, установленных требованиями для рекомендуемых в настоящих Правилах выбранных сталей.

  

   Требования к технологии выполнения сварных соединений

Способы, режимы и техника сварки резервуарных конструкций должны обеспечивать: требуемый уровень механических свойств для сварных соединений, предусмотренный проектом;

необходимую однородность и сплоченность металла сварных соединений;

оптимальную скорость охлаждения выполняемых сварных соединений, которая зависит от марки стали, углеродного эквивалента, толщины металла, режима сварки (погонной энергии), конструкции сварного соединения, а также температуры окружающей среды;

минимальный коэффициент концентрации напряжений;

минимальную величину сварочных деформаций и перемещений свариваемых элементов;

коэффициент формы каждого наплавленного шва (прохода) в пределах от 1,3 до 2,0 (при сварке со свободным формированием шва).

При сварке резервуарных конструкций в зимнее время необходимо систематически контролировать температуру металла и, если расчетная скорость осаждения металла шва превышает допускаемое значение для данной марки стали, необходимо организовать предварительный, сопутствующий или послесварочный подогрев свариваемых кромок. Требуемая температура и схема подогрева должны быть определены в ППР. Рабочие диапазоны скоростей охлаждения сталей, а также минимальные температуры, не требующие подогрева кромок при сварке, которые зависят от углеродного эквивалента, толщины металла, способа сварки и погонной энергии, также должны указываться в технологических проектах. Как правило, при осуществлении подогрева кромок следует нагревать металл на всю толщину в обе стороны от стыка на ширину 100 мм.

При сварке в зимнее время, независимо от температуры воздуха и марки стали, свариваемые кромки необходимо просушивать от влаги.

При использовании способов сварки с открытой дугой в зоне производства сварочных работ следует систематически контролировать скорость ветра. Допускаемая скорость ветра в зоне сварки должна указываться в ППР в зависимости от применяемых способов сварки и марок сварочных материалов. При превышении допускаемой скорости ветра сварка должна быть прекращена или должны быть устроены соответствующие защитные укрытия.

Сварка должна производиться при стабильном режиме. Колебания величины сварочного тока и напряжения в сети, к которой подключается сварочное оборудование, не должны превышать ± 5%.

Последовательность выполнения всех сварных соединений резервуара и схема выполнения каждого сварного шва в отдельности должны соблюдаться в соответствии с указаниями ППР исходя из условий обеспечения минимальных сварочных деформаций и перемещений элементов конструкций. При выполнении монтажных стыков стенки первыми, как правило, должны выполняться швы изнутри резервуара.

Не допускается выполнение сварочных работ на резервуаре при дожде, снеге, если кромки элементов, подлежащих сварке, не защищены от попадания влаги в зону сварки.

Все сварные соединения на днище и стенке резервуаров при ручной или механизированной сварке должны выполняться, как правило, не менее чем в два слоя. Каждый слой сварных швов должен проходить визуальный контроль, а обнаруженные дефекты должны устраняться.

Удаление дефектных участков сварных швов производится механическим методом (шлифмашинками или пневмозубилом) или воздушно-дуговой строжкой с последующей зашлифовкой поверхности реза.

Заварку дефектных участков сварных швов следует выполнять способами и материалами, предусмотренными технологией. Исправленные участки сварного шва должны быть подвергнуты повторному контролю физическими методами. Если в исправленном участке вновь будут обнаружены дефекты, ремонт сварного шва должен выполняться при обязательном контроле всех технологических операций руководителем сварочных работ.

Информация о выполненных ремонтных работах сварных соединений должна быть занесена в журнал контроля качества монтажно-сварочных работ.

Выполнение троекратного ремонта сварных соединений в одной и той же зоне должно согласовываться с разработчиком технологического проекта.

Удаление технологических приспособлений, закрепленных сваркой к корпусу резервуара, должно производиться, как правило, механическим способом или кислородной резкой с последующей зачисткой мест их приварки заподлицо с основным металлом и контролем качества поверхности в этих зонах. Вырывы основного металла или подрезы в указанных местах недопустимы.

После сварки швы и прилегающие зоны должны быть очищены от шлака и брызг металла.

                                  

     4. Обоснование способа сварки

    В соответствии целью дипломного проекта приварка люка выполняется в условиях монтажа, поэтому применение способов сварки ограничено ручной дуговой сваркой, механизированной сплошной и порошковой проволокой. Ручная дуговая сварка является штатным вариантом, который необходимо заменить более производительным способом. Рассмотрим эти способы  и оценим их преимущества и недостатки применительно к монтажным условиям.

Сущность процесса сварки МИГ/МАГ

Механизированная дуговая сварка плавящимся электродом в среде защитного газа - это разновидность электрической дуговой сварки, при которой электродная проволока подается автоматически с постоянной скоростью, а сварочная горелка перемещается вдоль шва вручную. При этом дуга, вылет электродной проволоки, ванна расплавленного металла и ее застывающая часть защищены от воздействия окружающего воздуха защитным газом, подаваемым в зону сварки (рис.5).

Рис.5. Схема сварочного поста механизированной сварки

Главными компонентами процесса механизированной сварки являются:

- источник питания, который обеспечивает дугу электрической энергией;
   - подающий механизм, который подает в дугу с постоянной скоростью электродную проволоку, которая плавится теплом дуги;
   - защитный газ.

Дуга горит между изделием и плавящейся электродной проволокой, которая непрерывно поступает в дугу и которая служит присадочным металлом. Дуга расплавляет кромки деталей и проволоку, металл которой переходит на изделие в образующуюся сварочную ванну, где металл электродной проволоки перемешивается с металлом изделия (то есть основным металлом). По мере перемещения дуги расплавленный (жидкий) металл сварочной ванны затвердевает (то есть кристаллизируется), образуя сварной шов, соединяющий кромки деталей. Сварка выполняется постоянным током обратной полярности, когда плюсовая клемма источника питания подключается к горелке, а минусовая – к изделию. Иногда применяется и прямая полярность тока сварки.

В качестве источника питания используются сварочные выпрямители, которые должны иметь жесткую или полого-падающую внешнюю вольтамперную характеристику. Такая характеристика обеспечивает автоматическое восстановление заданной длины дуги при ее нарушениях, например, из-за колебаний руки сварщика (это, так называемое саморегулирование длины дуги). Более подробно источники питания для сварки МИГ/МАГ изложены в разделе «Источники питания для дуговой сварки»

В качестве плавящегося электрода может применяться электродная проволока сплошного сечения и трубчатого сечения. Проволока трубчатого сечения заполнена внутри порошком из легирующих, шлаковых и газообразующих веществ. Такая проволока называется порошковой, а процесс сварки, при котором она используется, - сварка порошковой проволокой.

Имеется довольно широкий выбор сварочных электродных проволок для сварки в защитных газах, отличающихся по химическому составу и диаметру. Выбор химического состава электродной проволоки зависит от материала изделия и, в некоторой степени, от типа применяемого защитного газа. Химический состав электродной проволоки должен быть близким к химическому составу основного металла. Диаметр электродной проволоки зависит от толщины основного металла, типа сварного соединения и положения сварки.

Основное назначение защитного газа – предотвращение прямого контакта окружающего воздуха с металлом сварочной ванны, вылетом электрода и дугой. Защитный газ влияет на стабильность горения дуги, форму сварного шва, глубину проплавления и прочностные характеристики металла шва. Более подробная информация о защитных газах, а также о сварочных проволоках приведена в разделе «Сварочные материалы».

Разновидности процесса сварки МИГ/МАГ

В Европе сварка плавящимся электродом в защитных газах носит краткое название MIG/MAG (МИГ/МАГ). MIG (МИГ) означает "Металл Инертный Газ". При этой разновидности процесса используется инертный (неактивный) газ, т.е. такой который не реагирует химически с металлом сварочной ванны, например аргон или гелий. Как правило, при сварке в чистом инертном газе, несмотря на хорошую защиту сварочной зоны от воздействия окружающего воздуха, формирование сварного шва ухудшается, а дуга становится нестабильной. Этих недостатков можно избежать если применять смеси инертных газов с небольшими добавками (до 1 - 2%) таких активных газов, как кислород или углекислый газ (СО2).

MAG (МАГ) означает "Металл Активный Газ". К этой разновидности сварки в защитных газах относится сварка в смесях инертных газов с кислородом или углекислым газом, содержание которых составляет 5 – 30%. При таком содержании кислорода или углекислого газа смесь становится активной, т.е. она влияет на протекание физико-химических процессов в дуге и сварочной ванне. Сварку малоуглеродистых сталей можно производить в среде чистого углекислого газа (СО2). В некоторых случаях использование чистого углекислого газа обеспечивает лучшую форму проплавления и снижает склонность к порообразованию.

Так как при данном способе сварки электродная проволока подается автоматически, а сварочная горелка перемещается вдоль шва вручную, этот способ сварки называется механизированным, а сварочная установка – механизированным аппаратом (сварочным полуавтоматом). Однако сварку в защитных газах можно выполнять также и в автоматическом режиме, когда используются передвижные тележки или передвижные сварочные головки.

Процессы сварки МИГ или МАГ подходят для сварки всех обычных металлов, таких как нелегированные и низколегированные стали, нержавеющие стали, алюминий и некоторые другие цветные металлы. Более того, этот процесс сварки может быть использован во всех пространственных положениях. Благодаря своим многочисленным преимуществам сварка МИГ/МАГ находит широкое применение во многих областях.

     Сварочная проволока

         Сварочная проволока классифицируются по группам и маркам стали. Стандартом предусмотрено три группы сварочной проволоки: 6 марок низкоуглеродистой проволоки (Св-08, Св-08А, Св-08ГА, Св-10ГА и др.), 30 марок легированной проволоки (Св-08ГС, Св-08Г2С, Св-15ГСТЮЦА и др.), 41 марка высоколегированной проволоки (Св-12Х11НМФ, Св-12Х13,Св-10Х17Т, Св-06Х19Н9Т и др.). Всего 77 марок сварочной проволоки различного химического состава, который регламентирует ГОСТ 2246-70. 

     Проволока бывает следующих диаметров: 0,3; 0,5; 0,8; 1,0; 1,2; 1,,4; 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0; 12,0 мм. Проволока с диаметром до 3 мм применяется в основном  для сварки в среде защитных газов; от 1,6 до 6,0 – для ручной сварки штучными электродами; от 2,0 до 5,0 мм – для автоматической сварки под флюсом; Проволоки больших диаметров – для наплавочных работ. Первые две буквы "Cв" означают, что это сварочная проволока. Следующие за ними две цифры указывают содержание углерода в сотых долях процента. Затем следуют буквенные обозначения элементов, входящих в состав проволоки. При содержании легирующих элементов в проволоке до 1-го процента ставится только буква этого элемента, а ежели содержание легирующих элементов больше 1 процента, то после буквы указывается процентное содержание этого элемента в целых единицах.

   Порошковые проволоки могут использоваться как в защитных газах или под слоем флюса. Однако достаточно эффективно использование самозащитных проволок (рис.6).

    

Рис.6. Виды порошковой проволоки

Порошковая сварочная проволока может использоваться без дополнительной подачи газа в обычных условиях, и на ветру.
      Порошковая сварочная проволока обеспечивает даже большую производительность, нежели при сварке в процессе струйного переноса, автоматическая сварка под флюсом, с использованием сплошной обмедненной проволоки. Но при этом, перед сваркой порошковым электродом, необходимо тщательно зачищать рабочие поверхности сопряженных деталей, что не всегда возможно в "полевых" условиях. Порошковая сварочная проволока также весьма требовательна к механизмам автоматической подачи сварочного аппарата. При деформации порошковая сварочная проволока становится практически непригодной к использованию. То и дело, ее приходится извлекать из сварочного оборудования и заменять на новую.
Применение порошковой сварочной проволоки - наплавка деталей различного оборудования, штампового инструмента, строительных машин и литых сталей. После использования сварочной порошковой проволоки получается наплавленный слой металла, который защищает сталь от постоянных механических и температурных воздействий.

Сравнение сплошной и порошковой сварочной проволоки

Сварочная проволока делится на два, самых распространённых, типа - сплошная и порошковая. Применяется и тот, и другой тип проволоки для сварки необычайно широко. Её используют для чугуна, стали, алюминия, силумина, вольфрама, бронзы, меди, для наплавки защитного слоя на поверхности деталей. В промышленности широко используется и тот и другой тип проволоки.
  Сплошная
  проволока обычно имеет медное покрытие и может использоваться при условии применения инертного  газа.

Порошковая сварочная проволока - изготавливается путём завальцовки металлической полосы, а затем раскатки её в ленту и добавлением флюса.
По сравнению с цельнометаллической сварочной проволокой, порошковая обладает неоспоримыми преимуществом. Благодаря тому, что внутри неё находится флюс, при проведении сварочных работ образуются защитные газы, позволяющие использовать порошковую сварочную проволоку без применения дополнительного оборудования. Это существенно сказывается на скорости сварочных работ. Но  наряду с бесспорными преимуществами порошковая сварочная проволока имеет и ряд довольно существенных недостатков ограничивающих её применение.
       Во первых: для её применения необходимо использовать на порядок более качественные (следовательно, более дорогие) механизмы подачи в сварочных автоматах и полуавтоматах. Во вторых: при малейших деформациях порошковой сварочной проволоки становится невозможным дальнейшее её использование. И чтобы продолжить работу, её необходимо извлечь из автомата и заменить.
В третьих: Чтобы получить качественное соединение, предварительно необходимо очень тщательно зачистить место будущей сварки.

Поэтому не столь требовательная к соблюдению технологий цельнометаллическая омеднённая проволока сохраняет популярность и в наши дни.

Сварка МИГ/МАГ порошковой проволокой

Сварка порошковой проволокой может выполняться на том же оборудовании, что и сварка проволокой сплошного сечения. Сокращенное наименование этого процесса, принятое за рубежом - FCAW (Flux Cored Arc Welding).

Порошковая проволока представляет собой трубку из нелегированной стали, заполненную порошком (флюсом). Конструкция некоторых типов порошковых проволок представлена ниже.

Рис.7. Конструкции сварочных проволок

Каждый тип порошковой проволоки имеет свой состав флюса. Через флюс можно изменять характеристики дуги и переноса электродного металла, а также металлургические особенности формирование сварного шва. Благодаря этому удалось преодолеть некоторые недостатки, свойственные процессу сварки МАГ проволокой сплошного сечения. Так например, порошковая проволока позволяет вводить через флюс в металл шва легирующие элементы, что нельзя сделать в случае использования проволоки сплошного сечения, из-за ухудшения характера волочения.

Обычно газовая защита при сварке FCAW обеспечивается за счет газа, подаваемого из вне (Gas-shielded FCAW - FCAW-G). Однако, разработаны проволоки, в которых достаточный объем защитного газа производится при разложении флюса при нагреве; это так называемый процесс сварки самозащитной порошковой проволокой (Self-shielded FCAW - FCAW-S).

В действительности, сварка порошковой проволокой это всего лишь особая разновидность процессов сварки в защитных газах. Поэтому для нее характерны те же особенности, что и для других процессов сварки в защитных газах, так как она также нуждается в эффективной газовой защите зоны сварки. Например, требование поддерживать минимальное расстояние между газовым соплом и изделием также действительно и для сварки FCAW. Необходимо предпринимать меры против сквозняков от открытых дверей и окон, так как они могут отдувать защитный газ в сторону. Тоже самое касается потоков воздуха от вентиляционных систем и даже от воздушных систем охлаждения сварочных установок.

Функции флюса сердечника порошковой проволоки

Состав флюса разрабатывается согласно области применения порошковой проволоки. Основной функцией флюса является очистка металла шва от таких газов как кислород и азот, которые оказывают отрицательное влияние на механические свойства шва. Для того чтобы снизить содержание кислорода и азота в металле шва во флюс проволоки добавляют кремний и марганец, которые являются раскислителями, а также способствуют улучшению механических свойств металла. Такие элементы как кальций, калий и натрий вводятся во флюс с целью придания шлаку свойств, способствующих улучшению защиты расплавленного металла от воздействия атмосферного воздуха при кристаллизации металла.

Кроме того, шлак обеспечивает:

- формирование поверхности шва требуемого профиля;
- удержание ванны расплавленного металла при сварке в вертикальном и потолочном положениях;
- снижение скорости остывания металла сварочной ванны.

Кроме того, калий и натрий способствуют получению более мягкой (стабильной) дуги и снижают разбрызгивание.

Легирующие элементы. Легирование металла шва через флюс порошковой проволоки является более предпочтительным по сравнению с легированием металла шва через проволоку сплошного сечения (вводить в сердечник порошковой проволоки легирующие компоненты технически проще дешевле, чем изготавливать проволоку сплошного сечения из легированного металла). Обычно используются следующие легирующие элементы: молибден, хром, никель, углерод, марганец и др. Добавка этих элементов в металла шва повышает его прочность и пластичность, и в то же время, предел текучести, а также улучшает свариваемость металла.

Состав флюса определяет будет ли порошковая проволока рутилового или основного типа (также как и в случае с покрытыми электродами).

Применяются также порошковые проволоки с повышенным содержанием металлического порошка (металл–корд). Во флюсе порошковых проволок этого типа содержится большое количество железного порошка, а также добавки кремния и марганца, которые обычно содержатся в проволоках сплошного сечения. Некоторые проволоки содержат также до 2% никеля, который повышает ударную вязкость при низких температурах.

Проволоки типа металл–корд применяются для сварки стыковых и угловых швов во всех пространственных положениях. Они обеспечивают высокую производительность наплавки. Сварной шов имеет гладкую поверхность и не покрыт шлаком, а это означает, что можно выполнять несколько проходов без предварительной очистки предыдущего валика.

Область применения

В настоящее время сварка порошковой проволокой применяется там, где раньше использовались покрытые электроды, например, в кораблестроении и других отраслях тяжелого машиностроения применительно к толщинам более 1.5 мм изделий из обычных низкоуглеродистых, жаростойких, коррозионностойких и нержавеющих сталей.

Достоинства сварки порошковой проволокой

Сварка порошковой проволокой характеризуется следующими достоинствами:

- использование этого метода сварки выгодно с экономической точки зрения. Он обеспечивает высокие скорости сварки и длительные интервалы горения дуги без перерывов (так как отсутствует необходимость в частой смене электродов);
- при этом практически отсутствуют потери электродной проволоки;
- метод обеспечивает приемлемое качество при сварке металлов, характеризуемых низкой свариваемостью;
- порошковые проволоки основного типа менее чувствительны к загрязнениям основного металла и обеспечивают получение плотного шва с низкой склонностью к трещинам;
- сварка может выполняться во всех пространственных положениях;
- дуга и сварочная ванна хорошо видимы;
- после окончания сварки шов требует лишь незначительной обработки;
- вероятность образования опасных дефектов сварного шва ниже по сравнению со сваркой сплошной проволокой.

Недостатки процесса сварки FCAW

Некоторые из недостатков сварки порошковой проволокой представлены ниже:

- этот способ сварки очень чувствителен к сквознякам (открытым дверям и окнам), потокам воздуха от вентиляционных систем и даже от воздушных систем охлаждения сварочных установок;
- дополнительные расходы на сооружение укрытия места сварки при работе вне помещений;
- в случае недостаточных знаний сварщика особенностей процесса и взаимосвязи между параметрами режима возможны такие серьезные дефекты сварного шва, как недостаточное проплавление;
- требуются большие капитальные затраты на оборудование;
- при сварке порошковой проволокой, особенно самозащитной, выделяется относительно большое количество дыма.

        Защитные газы

      Защитные газы подразделяются на активные и инертные. Наиболее распространенным активным газом является углекислый газ С02. Он постановляется по ГОСТ 8050-76 и используется для механизированной и автоматической сварки малоуглеродистых, низколегированных и легированных сталей плавящимся электродом в чистом виде или в виде смесей с кислородом и аргоном.

К инертным газам относится аргон и гелий. Аргон поставляется по ГОСТ 10157-73, а гелий по ТУ 51-689-75. Эти газы в большинстве случаев используются для сварки плавящимся и неплавящимся электродами высоколегированных сталей, меди, алюминия, титана и других металлов, а также их сплавов.

    5. Расчет режимов  сварки

   Режимы сварки выбираются после назначения способа сварки, выбора разделки кромок с учетом свойств, свариваемого материала. На основании большого количества экспериментального материала и расчетных методик созданы таблицы режимов и номограммы, которые позволяют устанавливать оптимальный режим, обеспечивающий высокое качества сварного соединения.                                               

   Основными параметрами режима при ручной сварке покрытыми электродами являются: род тока и его полярность, диаметр электрода и сила тока. Род тока и полярность выбираются в зависимости от состава покрытий, диаметр электрода выбирается в зависимости от толщины свариваемого металла, сила тока жестко связана с диаметром электрода. При автоматической сварке основными параметрами режимов являются: род тока и  полярность, диаметр электродной проволоки, сила тока, Iсв, напряжение на дуге Uд, скорость сварки Vcв, скорость подачи электродной проволоки Vпод, марка флюса или газа.

В случае сварки в защитной среде обязательно указывается расход газа, обеспечивающий защиту зоны сварки. Выбор всех этих параметров осуществляется в зависимости от марки свариваемого материала, способа сварки и типа сварного соединения, используя таблицы и номограммы, либо расчетные формулы.

    Сварочное оборудование выбирается из условия обеспечения режимов сварки, применяемого способа сварки и свойств свариваемого материала, а при ручной сварке штучными электродами в зависимости от химического состава покрытия и режимов сварки.

Для приварки люка  выбран полуавтоматический метод сварки сплошной  проволокой. Это связано с тем, что в монтажных условиях не всегда возможно устранить  фактор нарушения газовой защиты от ветровых нагрузок.  Диаметр электрода выбирается в зависимости от толщины свариваемого металла.

Исходя из  конструкции  базовая толщина свариваемых изделий 5...8 мм, поэтому за основу принимаем катет 6 мм. Руководствуясь данными приведёнными в таблице 2, выбираем диаметр электродной проволоки равным 1,6 мм.

Данные по выбору диаметра электродной проволоки

                                                                                     Таблица 2

Толщина листа, мм

1-2

3-8

   6-24 и более

Диаметр электродной проволоки dЭ, мм

0,8-1,0

1,2-1,6

2,0

 

Характер  расчета  зависит  от  вида  соединения,  типа  разделки, количества  наплавленного  металла.

Произведем расчет режимов сварки углового однопроходного шва с катетом 6.

Ширина шва Еш зависит от катета, который для различных толщин задан ГОСТ 14771-76  применительно к угловым, тавровым соединениям.

Еш=  1,41  *  k  ,             (1)

где k – катет шва.

В данном расчете катет шва равен k = 6 мм

Еш =  1,4 *6  = 8,4 мм     (2)

Для получения качественного сварного шва расчетное значение    увеличиваем   на  2…3 мм, т. е. Е=12 мм

Глубина проплавления рассчитывается из условия

hпр  =  ( 0,85 … 1 ) * k  - 0,035  * k2 ,     (3)

где k- катет шва.

Значение в скобках принимаем равное 0,85

hпр  = 1*6 – 0,035 * 36 мм  = 4.74 мм

По диаметру электродной проволоки определяем значение сварочного тока.

Iсв  =  200  * dэл  * ( dэл – 0,5 ) + 50  ,                        (4)

где dэл- диаметр электродной проволоки.

Для сварки данного изделия будет использоваться сварочная проволока диаметром равный 1,6 мм.

Iсв  =  100  * 1,6  *  ( 1,6 – 0,5 )  +  50  =  226 А.

Напряжение на дуге рассчитывается по формуле

Ug  =  20  +  0,05  *  Iсв  *  dэл-0,5                                (5)

где  Iсв – значение сварочного тока, А;

dэл – диаметр электродной проволоки, мм.

Ug  =  20  +  0,05  *  226  * 1,6-0,5  =  48.25 В.

Площадь сечения наплавленного металла  Fн определяется из соотношения

Fн  =  0,5  *  k2  *  kу   ,                                      (6)

где  k – катет шва;

kу – коэффициент, учитывающий выпуклость шва.

Для катета 6 этот коэффициент равен 1,45

Подставляя  данные  в формулу (6) получим

Fн  =  0,5  *  36  *  1,45  =  26 мм2

Скорость сварки определяется по формуле:

Vсв = αн  *    Iсв */  р * Fн                                   (7)

где р - плотность свариваемого металла  (7,8 г/см3);

αн -коэффициент наплавки.

Для  механизированной  сварки  в   защитных   газах   αн составляет  15 – 18  г/А*ч.

Коэффициент наплавки принимаем равный 15 г/А*ч.

Тогда

Vсв = 15  *226 / 7,8  * 26 = 113 м/ч

Скорость подачи электродной проволоки равна,

Vпп  =  4 * Vсв * Fн / *П  * dэл2                                ( 8 )

где  Vсв – скорость сварки;

Fн – площадь сечения наплавленного металла шва;

П = 3,14

dэл – диаметр электродной проволоки.

Vпп =  4  * 113  * 24/ 3,14  * 1.6  = 552  м/ч.

Значение расхода защитного газа принимаем в соответствие с таблицей 3

  В рассматриваемом случае расход газа составит 10л/мин.

Зависимость напряжения и расхода углекислого газа от силы тока                                                                                                                 

                                                                                                                                                                          

Таблица 3

  Сила свароч.тока,А

60

100

≤ 160

≤ 240

≤ 300

≤ 380

≤ 450

   Напряжение дуги,В

18

20

≤ 22

≤ 27

30

≤ 32

≤ 34

Расх. СО2, л/мин

≤ 10

≤ 10

≤ 10

≤16

≤ 16

20

≤ 20

Таблица режимов сварки в среде защитных газов

Таблица 4                                                                                         

   Iс

       Uд

       Vсв

      Vпп

        F

        К

       Еш

      hпр

     А

        В

       м/ч

       м/ч

       мм2

       Мм

       мм

      мм

Расчётные значения

     134

      27.5

      14

      280

       18

        5

      10

     4,1

                                    Справочные значения

    120…250

     25…28

     1215

    250…280

     

-        

     4…7

      8...12

     4…6

Заданные значения

    130…150

     25…27

     15…20

    280…300

     18…20

        5

      10…12

4…5

Таким образом, сварку  предлагается выполнять методом механизированной сварки цельной проволокой. Применяемая проволока СВ08Г2С  относится к разряду омедненных. Характеристики проволоки сварочной СВ08Г2С соответствуют ГОСТ 2246-70. СВ08Г2С обеспечивает надежность соединений благодаря ее высоким сварочно-технологическим свойствам. Диаметр стальной сварочной проволоки СВ08Г2С варьируется от 0,8 до 4,0 мм, она поставляется в мотках и на кассетах. Проволока СВ08Г2С применяется для сварочных работ малоуглеродистых и низколегированных сталей. Сварка проводится и в смеси аргона AR и углекислого газа СО2 (соотношение рабочих газов в смеси 80/20) и в среде чистого углекислого газа. 
В процессе сварки сварочная проволока расплавляется и сваривает раскаленным металлом свариваемые поверхности. Проволока омедненная для сварки соответствует ГОСТу 2246-70.

Рис.8 Сварочная проволока

Источник питания

В дипломном проекте предложено использовать инверторные сварочные аппараты - полуавтоматы с микропроцессорным управлением для сварки самозащитной порошковой проволокой (без газа), непрерывной и импульсной сварки MIG-MAG, пайки, а также TIG-DC LIFT и MMA сварки (рис.9).

Благодаря синергетическим программам и дистанционной регулировке параметров сварки сварочные аппараты рекомендованы к промышленному применению.

Возможно использование сварочного аппарата с широким диапазоном материалов, таких как сталь, нержавеющая сталь, алюминий и его сплавы.

50 предустановленных и 40 персональных программ сварки.
сварочные аппараты комплектуются отдельных блоком подачи проволоки с 4-роликовым подающим механизмом.
2-уровневая регулировка времени подачи газа после выключения тока.
Регулировка нарастания сварочного тока, начальной скорости подачи проволоки, времени плавления проволоки.
Выбор между 2- или 4-тактным режимами работы сварочного аппарата в зависимости от свариваемого материала или режима сварки точками.
Автоматический тест-контроль всех функций при запуске сварочного аппарата
Термозащита, защита от перегрузок, повышенного и пониженного напряжения, отсутствия фазы

Стандартная версия поставляется с тележкой и принадлежностями для сварки типа MIG-MAG, в версию R.A. также входит устройство водяного охлаждения G.R.A. 2400.

Рис.9. Источник питания фирмы BlueWeld 

6. Контроль качества сварных соединений

6.1. Общие требования

1. Контроль качества работ по изготовлению и монтажу конструкций резервуаров должен осуществляться заказчиком, изготовителем и монтажником (производителем работ).

2. Проектировщик осуществляет авторский надзор за сооружением резервуаров. Представителям заказчика, а также представителям проектной организации, выполняющим авторский надзор, представляются свободный доступ ко всем рабочим местам, где выполняются работы по изготовлению и монтажу конструкций резервуаров, и рабочая документация.

3. При сооружении резервуаров применяются следующие виды контроля качества сварных соединений:

механические испытания сварных соединений образцов-свидетелей;

визуальный контроль всех сварных соединений резервуара;

измерительный с помощью шаблонов, линеек, отвесов, геодезических приборов и т.д.;

контроль герметичности (непроницаемости) сварных швов с пользованием проб «мел-керосин», вакуумных камер, избыточного давления воздуха или цветной дефектоскопии;

физические методы - для выявления наличия внутренних дефектов: радиография или ультразвуковая дефектоскопия, а для контроля наличия поверхностных дефектов с малым раскрытием - магнитография или цветная дефектоскопия;

гидравлические и пневматические прочностные испытания конструкции резервуара.

6.2. Организация контроля

1. В проектной документации (ППР) должны указываются методы и объемы контроля всех сварных соединений конструкций резервуара, нормативы для оценки дефектности сварных швов и последовательность работ.

2. Ответственность за организацию контроля качества сварных соединений, как правило, возлагается на руководителей сварочных работ от изготовителя и монтажника.

3. Контроль качества сварных соединений резервуаров физическими методами выполняется по заявке, в которой должны быть указаны характеристики соединения, тип и категория шва, толщина металла и марка стали, пространственное положение, объем контроля.

6.3. Визуальный контроль

1. Визуальному контролю должны подвергаться 100 % длины всех сварных соединений резервуара.

2. По внешнему виду сварные швы должны удовлетворять следующим требованиям:

по форме и размерам швы должны соответствовать проекту;

швы должны иметь гладкую или равномерно чешуйчатую поверхность (высота или глубина впадин не должка превышать 1 мм);

металл шва должен иметь плавное сопряжение с основным металлом;

швы не должны иметь недопустимых внешних дефектов.

   3. К недопустимым внешним дефектам сварных соединений резервуарных конструкций относятся трещины любых видов и размеров, несплавления, наплывы, грубая чешуйчатость, наружные поры и цепочки пор, прожоги и свищи.

6.4. Контроль герметичности

1. Контролю на герметичность подлежат все сварные швы, обеспечивающие герметичность резервуара, а также плавучесть и герметичность понтона или плавающей крыши.

2. Контроль герметичности сварных швов с использованием пробы «мел-керосин» следует производить путем обильного смачивания швов керосином. На противоположной стороне сварного шва, предварительно покрытой водной суспензией мела или каолина, не должно появляться пятен. Продолжительность контроля капиллярным методом зависит от толщины металла, типа сварного шва и температуры испытания. Заключение о наличии в сварном соединении сквозных дефектов делается не ранее 1 ч после нанесения на шов индикатора сквозных и поверхностных дефектов.

3. При вакуумном способе контроля герметичности сварных швов вакуумкамеры должны создавать разрежение над контролируемым участком с перепадом давления не менее 250 мм вод. ст. Перепад давления должен проверяться вакуумметром. Неплотность сварного шва обнаруживается по образованию пузырьков в нанесенном на сварное соединение мыльном или другом пенообразующем растворе.

4. Допускается не производить контроль на герметичность стыковых соединений листов стенки толщиной 12 мм и более.

5. Контроль давлением применяется для проверки герметичности сварных швов приварки усиливающих листовых накладок люков и патрубков на стенке резервуаров. Контроль производится путем создания избыточного воздушного давления от 400 до 4000 мм вод. ст. в зазоре между стенкой резервуара и усиливающей накладкой с использованием для этого контрольного отверстия в усиливающей накладке. При этом на сварные швы внутри и снаружи резервуара должна быть нанесена мыльная пленка, пленка льняного масла или другого пенообразующего вещества, позволяющего обнаружить утечки. После проведения испытаний контрольное отверстие должно быть заполнено ингибитором коррозии.

6. Контроль герметичности сварных соединений настила крыш резервуаров рекомендуется проводить в процессе гидравлических и пневматических испытаний за счет создания избыточного давления воздуха внутри резервуара до 150 ÷ 200 мм вод. ст.

6.5. Физические методы контроля

1. Объем контроля сварных соединений резервуаров физическими методами определяется в рабочей документации КМ в зависимости от:

класса резервуара по степени опасности;

категории сварного шва;

уровня расчетных напряжений в сварном соединении;

условий и режима эксплуатации резервуара, включая температуру эксплуатации, цикличность нагружения, сейсмичность района и т.д.

2. Контроль радиографический.

1. Контроль радиографический (рентгенографированием или гаммаграфированием) должен производиться в соответствии с нормативными документами, утвержденными в установленном порядке, для всех резервуаров объемом 1000 м3 и более.

Наряду с радиографическим контролем может применяться рентгенотелевизионный контроль согласно установленным нормативным документам.

Радиографический контроль выполняется только после приемки сварных соединений по визуальному контролю.

При контроле пересечений швов рентгеновские пленки должны размещаться Т-образно или крестообразно - по две пленки на каждое пересечение швов.

Снимки должны иметь длину не менее 240 мм, а ширину - согласно соответствующим стандартам. Чувствительность снимков должна соответствовать 3-му классу согласно этому стандарту.

Маркировочные знаки должны устанавливаться согласно стандарту и содержать идентификационные номера резервуара и контролируемого конструктивного элемента, а также номер рентгенограммы, указанный на развертке контролируемого элемента.

Для соединений из деталей толщиной 8 мм и более допускается вместо радиографического контроля применять контроль ультразвуковой дефектоскопией.

2. Оценка внутренних дефектов сварных швов при радиографическом контроле должна производиться по соответствующим стандартам и должна соответствовать:

для резервуаров III класса - 6-му классу;

для резервуаров II класса - 5-му классу;

для резервуаров I класса - 4-му классу.

Допускаемые виды и размеры дефектов в сварных соединениях в зависимости от их класса регламентируются соответствующими стандартами.

3. Радиографический контроль применяется для контроля стыковых сварных швов стенки и стыковых швов окраек днищ в зоне сопряжения со стенкой резервуаров.

Участки всех вертикальных сварных соединений в зонах примыкания к днищу длиной не менее 240 мм на резервуарах объему более 1000 м3 подлежат обязательному контролю.

При выборе зон контроля вертикальных и горизонтальных соединений преимущественное внимание уделять проверке качества мест пересечения швов.

монтажные стыки полотнищ стенок должны контролироваться в объеме 100 % вертикальных швов и всех пересечений вертикальных и горизонтальных швов;

4. При обнаружении недопустимых дефектов сварного шва должны быть определены границы дефектного участка. Кроме того, должен быть сделан дополнительный снимок (не считая снимков, необходимых для определения границ дефекта) в любом месте этого же или другого шва, выполненного тем же сварщиком, который допустил дефект. На схемах расположения рентгенограмм должны быть указаны места, где были обнаружены недопустимые дефекты и проводилось исправление. Если в сварном соединении установлен уровень дефектности более 10 %, то объем контроля таких швов удваивается.

6.5.1. Ультразвуковая дефектоскопия.

Ультразвуковая дефектоскопия производится для выявления внутренних дефектов (трещин, непроваров, шлаковых включений, газовых пор) с указанием количества дефектов, их эквивалентной площади, условной протяженности и координат расположения.

Звуковые волны не изменяют траектории движения в однородном материале. Отражение акустических волн происходит от раздела сред с различными удельными акустическими сопротивлениями. Чем больше различаются акустические сопротивления, тем большая часть звуковых волн отражается от границы раздела сред. Так как включения в металле обычно содержат газ (смесь газов) возникающих вследствие процесса сварки, литья и т. п. И не успевают выйти наружу при затвердевании металла, смесь газов имеет на пять порядков меньшее удельное акустическое сопротивление, чем сам металл, то отражение будет практически полное.

Разрешающая способность акустического исследования, то есть способность выявлять мелкие дефекты раздельно друг от друга, определяется длиной звуковой волны, которая в свою очередь зависит от частоты ввода акустических колебаний. Чем больше частота, тем меньше длина волны. Эффект возникает из-за того, что при размере препятствия меньше четверти длины волны, отражения колебаний практически не происходит, а доминирует их дифракция. Поэтому, как правило, частоту ультразвука стремятся повышать. С другой стороны, при повышении частоты колебаний быстро растет их затухание, что сокращает возможную область контроля. Практическим компромиссом стали частоты в диапазоне от 0,5 до 10 МГц.

Существует несколько методов возбуждения ультразвуковых волн в исследуемом объекте. Наиболее распространенным является использование пьезоэлектрического эффекта. В этом случае излучение ультразвука производится с помощью преобразователя, который преобразует электрические колебания в акустические путём обратного пьезоэлектрического эффекта. Пройдя через контролируемую среду, сигналы попавшие на пьезопластину преобразователя, вследствие прямого пьезоэлектрического эффекта вновь становятся электрическими, которые и регистрируются измерительными цепями. В зависимости от конструкции и подключения, пьезоэлектрические преобразователи могут выполнять роль только излучателя ультразвуковых колебаний или только приёмника, либо совмещать в себе обе функции.

Также используются электромагнитно-акустический (ЭМА) метод, основанный на приложении сильных переменных магнитных полей к металлу. КПД этого метода гораздо ниже, чем у пьезоэлектрического, но зато может работать через воздушный зазор и не предъявляет особых требований к качеству поверхности.

Классификация методов исследования

Существующие акустические методы неразрушающего контроля подразделяют на две большие группы — активные и пассивные.

Активные.  Активные методы контроля подразумевают под собой излучение и приём акустических волн. На рис. 10 представлен метод отражения

Рис.10. Эхо-импульсный метод контроля сварного соединения без дефекта (сверху) и с дефектом (снизу). В правой части изображения представлен экран дефектоскопа с изображённым на нём зондирующим импульсом (сверху) и импульсом от дефекта (снизу).

Эхо-метод или эхо-импульсный метод — наиболее распространенный: преобразователь генерирует колебания (то есть выступает в роли генератора) и он же принимает отражённые от дефектов эхо-сигналы (приёмник). Данный способ получил широкое распространение за счёт своей простоты, так как для проведения контроля требуется только один преобразователь, следовательно при ручном контроле отсутствует необходимость в специальных приспособлениях для его фиксации (как, например, в дифракционно-временном методе) и совмещении акустических осей при использовании двух преобразователей. Кроме того, это один из немногих методов ультразвуковой дефектоскопии, позволяющий достаточно точно определить координаты дефекта, такие как глубину залегания и положение в исследуемом объекте (относительно преобразователя).

Зеркальный или Эхо-зеркальный метод — используются два преобразователя с одной стороны детали: сгенерированные колебания отражаются от дефекта в сторону приемника. На практике используется для поиска дефектов расположенных перпендикулярно поверхности контроля, например трещин.

Рис.11Трещина. в угловом сварном шве, выявляемая дифракцинно-временным методом контроля

Дифракционно-временной метод — используется два преобразователя с одной стороны детали, расположенные друг напротив друга. Если дефект имеет острые кромки (как, например, трещины) то колебания дифрагируют на концах дефекта и отражаются во все стороны, в том числе и в сторону приёмника. Дефектоскоп регистрирует время прихода обоих импульсов при их достаточной амплитуде. На экране дефектоскопа одновременно отображаются оба сигнала от верхней и от нижней границ дефекта, тем самым можно достаточно точно определить условную высоту дефекта. Способ достаточно универсален, позволяет производить ультразвуковой контроль на швах любой сложности, но требует специального оборудования для фиксации преобразователей, а также дефектоскоп, способный работать в таком режиме. Кроме того, дифрагированные сигналы достаточно слабые.

Дельта-метод — разновидность зеркального метода — отличается механизмом отражения волны от дефекта и способом принятия сигнала. В диагностике используется для поиска специфично расположенных дефектов. Данный метод очень чувствителен к вертикально-ориентированным трещинам, которые не всегда удаётся выявить обычным эхо-методом.

Рис.12.Ревербационный метод контроля двухслойной конструкции

Ревербационный метод — основан на постепенном затухании сигнала в объекте контроля. При контроле двухслойной конструкции, в случае качественного соединения слоёв, часть энергии из первого слоя будет уходить во второй, поэтому ревербация будет меньше. В обратном случае будут наблюдаться многократные отражения от первого слоя, так называемый лес. Метод используется для контроля сцепления различных видов наплавок, например баббитовой наплавки с чугунным основанием. Основным недостатком данного метода является регистрация дефектоскопом эхо-сигналов от границы соединения двух слоёв. Причиной этих эхо-сигналов является разница скоростей упругих колебаний в материалах соединения и их различное удельное HYPERLINK "https://ru.wikipedia.org/wiki/Удельное_акустическое_сопротивление"акустическое сопротивление. Например на границе баббит-сталь возникает постоянный эхо-сигнал даже в местах качественного сцепления. В силу конструкционных особенностей некоторых изделий, контроль качества соединения материалов ревербационным методом может быть невозможен именно из-за наличия на экране дефектоскопа эхо-сигналов от границы соединения.

Акустическая микроскопия благодаря повышенной частоте ввода ультразвукового пучка и применению его фокусировки, позволяет обнаруживать дефекты, размеры которых не превышают десятых долей миллиметра. Широкое применение в промышленности затруднено в связи с крайне низкой производительностью метода. Данный метод подходит для исследовательских целей, диагностике, а также радиоэлектронной промышленности.

Когерентный метод — по сути является разновидностью Эхо-импульсного метода. Помимо двух основных параметров эхо-сигнала, таких как амплитуда и время прихода, используется дополнительно фаза эхо-сигнала. Использование когерентного метода, а точнее нескольких идентичных преобразователей, работающих синфазно. При использовании специальных преобразователей, таких как преобразователь бегущей волны или его современный аналог преобразователь с фазированной решёткой. Исследования применимости данного метода к реальным объектам контроля еще не завершены. Метод находится на стадии научно-исследовательских изысканий.

Прохождения

Методы прохождения подразумевают под собой наблюдение за изменением параметров ультразвуковых колебаний, прошедших через объект контроля, так называемых сквозных колебаний. Изначально для контроля применялось непрерывное излучение, а изменение его амплитуды сквозных колебаний расценивалось как наличие дефекта в контролируемом объекте, так называемой звуковой тени. Отсюда появилось название теневой метод. Со временем непрерывное излучение сменилось импульсным, а к фиксируемым параметрам помимо амплитуды добавились также фаза, спектр и время прихода импульса и появились другие методы прохождения. Термин теневой потерял свой первоначальный смысл и стал означать один из методов прохождения. В англоязычной литературе метод прохождения называется through transmission technique или through transmission method, что полностью соответствует его российскому названию. Термин теневой в англоязычной литературе не применяется.

Теневой — используются два преобразователя, которые находятся по две стороны от исследуемой детали на одной акустической оси. В данном случае один из преобразователей генерирует колебания (генератор), а второй принимает их (приёмник). Признаком наличия дефекта будет являться значительное уменьшение амплитуды принятого сигнала, или его пропадание (дефект создает акустическую тень).

Зеркально-теневой — используется для контроля деталей с двумя параллельными сторонами, развитие теневого метода: анализируются отражения от противоположной грани детали. Признаком дефекта, как и при теневом методе, будет считаться пропадание отраженных колебаний. Основное достоинство этого метода в отличие от теневого заключается в доступе к детали с одной стороны.

Рис.13.Вертикально ориентированная трещина, выявляемая зеркальным методом.

Временной теневой основан на запаздывании импульса во времени, затраченного на огибание дефекта. Используется для контроля бетона или огнеупорного кирпича.

Метод многократной тени аналогичен теневому, с тем исключением, что ультразвуковая волна несколько раз проходит через параллельные поверхности изделия.

При эхо-сквозном методе используют два преобразователя, расположенные по разные стороны объекта контроля друг напротив друга. В случае отсутствия дефекта, на экране дефектоскопа наблюдают сквозной сигнал и сигнал, двукратно отражённый от стенок объекта контроля. При наличии полупрозрачного дефекта, также наблюдают отражённые сквозные сигналы от дефекта.

Эхо-сквозной метод контроля. При отсутствии дефекта на экране дефектоскопа наблюдаются только 1 и 2 импульсы. При наличии полупрозрачного дефекта, дополнительно 3 и 4-й. На рисунке для наглядности отражения ультразвуковых волн, неверно показаны направления их распространения. Ультразвуковые волны распространяются вдоль акустической оси передатчика (верхнего преобразователя).

2. Ультразвуковая дефектоскопия должна проводиться в соответствии со стандартом.

6.5.2. Магнитопорошковая или цветная дефектоскопия

1. Контроль магнитопорошковой или цветной дефектоскопией производится в целях выявления поверхностных дефектов основного металла и сварных швов, не видимых невооруженным глазом. Магнитопорошковой или цветной дефектоскопии подлежат:

все вертикальные сварные швы стенки и швы соединения стенки с днищем резервуаров, эксплуатируемых при температуре хранимого продукта свыше 120 °С;

сварные швы приварки люков и патрубков к стенке резервуаров после их термической обработки;

места на поверхности листов стенок резервуаров с пределом текучести свыше 345 МПа, где производилось удаление технологических приспособлений.

6.5.3. Контроль при гидравлических испытаниях резервуара

1. При гидравлических испытаниях резервуара фиксируются и бракуются все места, где появляются течи и отпотины. После опорожнения резервуара в этих местах производятся необходимый ремонт и контроль.

7. Методы борьбы со сварочными напряжениями и деформациями

Сварка вызывает в изделиях появление напряжений, существующих без приложения внешних сил. Напряжения возникают по ряду причин, прежде всего из-за неравномерного распределения температуры при сварке, что затрудняет расширение и сжатие металла при его нагреве и остывании, так как нагретый участок со всех сторон окружен холодным металлом, размеры которого не изменяются. Вследствие структурных превращений участков металла околошовной зоны, нагретых в процессе сварки выше критических точек, в свариваемых конструкциях возникают структурные напряжения. В отличие от напряжений, действующих на конструкцию во время ее эксплуатации и вызываемых внешними силами, эти напряжения называют внутренними (собственными) и остаточными сварочными напряжениями. Если значения сварочных напряжений достигнут предела текучести металла, они вызовут изменение размеров и формы, т.е. деформацию изделия.

Деформации могут быть временными и остаточными. Если остаточные деформации достигнут заметной величины, они могут привести к неисправимому браку. Остаточные напряжения могут вызвать не только деформацию сварного изделия, но и его разрушение. Особенно сильно проявляется действие этих напряжений в условиях, способствующих хрупкому разрушению сварного соединения, которое происходит в результате неблагоприятного сочетания концентрации напряжений, температуры и остаточных напряжений. Первые два фактора меньше поддаются изменению, чем остаточные напряжения, поэтому применяют ряд мер по предотвращению и снижению сварочных напряжений и деформаций.

Высокая концентрация теплоты способствует сужению зоны, подвергающейся пластическим деформациям, и уменьшению деформаций конструкций. С этой точки зрения наиболее благоприятной является замена ручной сварки покрытыми электродами автоматической или полуавтоматической сваркой под флюсом или в защитных газах. Для обеспечения минимальной деформации сварной конструкции следует накладывать сварные швы наименьшего сечения и не допускать их увеличения в процессе изготовления конструкции. Величина и характер сварочных напряжений и остаточных деформаций непосредственно зависит от погонной энергии, определяемой режимом сварки, а также от размера шва или слоя. При прочих равных условиях Х-образная разделка кромок, обеспечивающая симметричное расположение шва, вызывает меньшую деформацию, чем V-образная. Эффективной мерой уменьшения деформаций является применение сварочных материалов, обеспечивающих более высокую прочность металла шва и поэтому позволяющих делать швы меньшего сечения.

На величину остаточных напряжений и деформаций оказывает влияние порядок наложения шва по его длине и сечению. Наибольшие остаточные деформации возникают при сварке «напроход». При ручной сварке швы следует выполнять от середины к концам двумя сварщиками. Уменьшает напряжения и деформации обратноступенчатая сварка, сварка каскадом. Эффективной мерой снижения остаточных деформаций является закрепление свариваемых деталей в специальных кондукторах. Для борьбы с деформациями часто применяют предварительный обратный изгиб свариваемых деталей или определенный порядок сварки.

При резком охлаждении сварного соединения нагреваемый при сварке участок, в котором возникают пластические деформации, сужается, что приводит к уменьшению остаточных деформаций и напряжений. Предварительный или сопутствующий подогрев уменьшает перепад температур между участками сварного соединения, в результате чего снижаются напряжения.

Существуют также конструктивные меры борьбы со сварочными напряжениями и деформациями. С помощью этих мер стараются получить равномерное по сечению изделия распределение напряжений от рабочей нагрузки и остаточных, а также устранить всевозможные концентраторы напряжений. Для этого сводят до минимума число пересекающихся и сближающихся швов; Число швов, образующих замкнутый контур; сокращают скопление швов в изделии; обеспечивают свободные деформации в частях изделия при сварке швов (постановка лишних ребер жесткости или косынок, уменьшающих гибкость изделия, часто приносит вред); применяют по возможности стыковые швы, которые обеспечивают наименьшую концентрацию напряжений.

Если меры по предотвращению образования сварочных напряжений и деформаций оказываются недостаточными, необходимо снять эти напряжения. Для полного снятия напряжений сварные соединения подвергают термической обработке. Снять напряжения можно термопластическим методом, основанным на создании пластических деформаций в зоне шва путем нагрева смежных со швом участков основного металла. Одной из мер снятия сварочных напряжений является расплавление участка перехода от шва к основному металлу неплавящимся электродом в аргоне. При этом нарушается равновесие внутренних сил напряженного поля вследствие перехода части металла в жидкое и пластическое состояния. Сварочные напряжения могут быть сняты почти полностью, если в околошовной зоне создать дополнительные пластические деформации путем проковки шва. Эффективной мерой снятия сварочных напряжений в конструкциях из незакаливающихся сталей является воздействие на сварную конструкцию внешних сил, от которых в ней возникают напряжения, равные пределу текучести металла. Устранить деформации можно с помощью термической правки, когда нагрев производят газокислородным пламенем или электрической дугой неплавящимся электродом, или путем механической правки на прессах или вручную.


Рис.15. Приспособления для сборки листовых конструкций

а - на планках, б - на швеллерах, в - уголки-фиксаторы, г - прокладки-фиксаторы зазора, д - шайбы-фиксаторы; 1 - планка, 2 - упоры, 3 - шайбы, 4 - круглые клинья, 5 - швеллер, 6 - уголки, 7 - болты, 8 - прокладка, 9 - оправка.

С помощью этих приспособлений конструкции собирают в такой последовательности. До расстроповки листа на каждую пару шайб-фиксаторов 3 надевают стяжные планки 1 и временно закрепляют их круглыми клиньями 4, забивая их в отверстия шайб. Последовательно от одного конца листа к другому подгоняют все стыки шайб-фиксаторов. После установки и выверки всех листов одного пояса шайбы-фиксаторы сваривают, а стяжные планки снимают для сборки следующих поясов.

Технологический процесс сборки и сварки

005 КОМПЛЕКТОВАНИЕ

1. Укомплектовать сварочные заготовки совместно с сопроводительной документацией.

2. Оформить технологический паспорт.

010 КОНТРОЛЬ

1. Проверить наличие аттестации: инженерно-технических работников, дефектоскопистов, контролеров, сварщиков.

2. Проконтролировать периодичность проверки исправности сборочно-сварочного оборудования, приспособлений и аппаратуры в соответствии с графиком.

3. Проверить комплектность заготовок по спецификации.

4. Проверить изготовление входящих деталей по техническому паспорту.

5. Проверить результаты входного контроля сварочных материалов.

6. Проверить маркировку.

7. Результаты контроля зафиксировать в технологическом паспорте.

          015 СБОРОЧНАЯ

       Собрать элементы конструкции согласно чертежа, зафиксировать с помощью сборочных приспособлений, зажимов.

          020 КОНТРОЛЬ

        Проверить правильность сборки согласно чертежа.

          025 СЛЕСАРНАЯ

     Прихватить элементы конструкции на режимах. Представленных в таблице (рамер прихваток 30...40 мм, расстояние между прихватками 200...300мм).

           030 СВАРОЧНАЯ

       Варить сборку  катетом, указанным в чертеже.

          035 КОНТРОЛЬ

      Проверить качество сварного соединения  на наличие наплывов, подрезов и других внешних дефектов согласно требованиям руководящих документов.

9.Безопасность жизнедеятельности

Процессы сварки являются источниками образования опасных и вредных факторов, способных оказывать неблагоприятное воздействие на работников.

К опасным и вредным производственным факторам относятся: твердые и газообразные токсические вещества в составе сварочного аэрозоля, интенсивное излучение сварочной дуги в оптическом диапазоне (ультрафиолетовое, видимое, инфракрасное), интенсивное тепловое (инфракрасное) излучение свариваемых изделий и сварочной ванны, искры, брызги и выбросы расплавленного металла и шлака, электромагнитные поля, ультразвук, шум, статическая нагрузка и т.д

Поражения электрическим током. При сварке плавлением используют источники тока с напряжением холостого хода Uxx = 45 - 80 В при постоянном токе, Uхx = 55-75 В при переменном токе, Uxx = 180 - 200 В при плазменной резке. Поэтому источники питания должны иметь автоматические устройства, отключающие их в течение не более 0,5 с при обрыве дуги[9].

Учитывая непостоянную величину электрического сопротивления человеческого тела (так, при сухой коже, например, сопротивление составляет 8000—20 000 Ом, а при влажных руках, повреждениях кожи сопротивление снижается до 400—1000 Ом), безопасным считают напряжение не выше 12 В (переносное освещение). Если сварщик работает в тесном помещении, может иметь большую площадь контакта с металлической поверхностью, с целью уменьшения опасности поражения электрическим током необходимо соблюдение следующих мероприятий:

1. Надежная изоляция всех проводов, связанных с питанием источника тока и сварочной дуги, устройство геометрически закрытых включающих устройств, заземление бункеров сварочных аппаратов. Заземлению подлежат: бункера источников питания, аппаратного ящика, вспомогательное электрическое оборудование. Сечение заземляющих проводов должно быть не менее 25 мм2. Подключением, отключением и ремонтом сварочного оборудования занимается только дежурный электромонтер. Сварщикам запрещается производить эти работы[9].

2. Применение в источниках питания автоматических выключателей высокого напряжения, которые в момент холостого хода разрывают сварочную цепь и подают на держатель напряжение 12 В[9].

3. Надежное устройство электрододержателя с хорошей изоляцией, которая гарантирует, что не будет случайного контакта токоведущих частей электрододержателя со свариваемым изделием или руками сварщика (ГОСТ 14651-69). Электрододержатель должен иметь высокую механическую прочность и выдерживать не менее 8000 зажимов электродов[9].

4. Работа в исправной сухой спецодежде и рукавицах. При работе в тесных отсеках и замкнутых пространствах обязательно использование резиновых галош и ковриков, источников освещения с напряжением не свыше 6—12 В[9].

5. При работе на электронно-лучевых установках предотвращение опасности поражения лучами жесткого рентгеновского излучения в связи с использованием ускоряющего напряжения 20—22 кВ и выше.

Наряду с соблюдением указанных в п. 1 — 5 требований, с целью предотвращения поражения электрическим током, запрещается притрагиваться к клеммам и зажимным болтам цепи высокого напряжения; снимать крышки клеммников электродвигателей подающего и ходового механизмов автоматов и полуавтоматов; открывать дверцы аппаратного ящика и трансформаторов и регулировать их и т. п.

Отравления вредными газами и аэрозолями, выделяющимися при сварке. Высокая температура дуги (6000 — 8000° С) неизбежно приводит к тому, что часть сварочной проволоки, покрытий, флюсов переходит в парообразное состояние. Эти пары, попадая в атмосферу цеха, конденсируются и превращаются в аэрозоль конденсации, частицы которой по дисперсности приближаются к дымам и легко попадают в дыхательную систему сварщиков. Эти аэрозоли представляют главную профессиональную опасность труда сварщиков. Количество пыли в зоне дыхания сварщика зависит главным образом от способа сварки и свариваемых материалов, но в известной степени определяется и типом конструкций. Химический состав электросварочной пыли зависит от способов сварки и видов основных и сварочных материалов. Наряду с пылью при дуговой сварке также образуются и выделяются газообразные продукты — окислы азота, окись углерода; при сварке электродом с покрытием «Б» и под флюсами — фтористые соединения. В зоне дыхания сварщиков концентрация этих газов может достигать (мг/л): N2O5 0,009—0,018; SiF4, HF до 0,004 каждого, СО до 0,46. При сварке цветных металлов и их сплавов в зоне дыхания сварщика могут наблюдаться такие вредные газообразные соединения, как ZnO, SnO2, MnO2, SiO2 и т. д.[9]

Наиболее опасны для здоровья сварщиков аэрозоли марганца, так как отравление марганцем может вызвать длительное и стойкое поражение центральной нервной системы вплоть до параличей. Острые отравления парами цинка и свинца могут вызвать литейную лихорадку, а отравление хромовым ангидридом — бронхиальную астму. Длительное отложение пыли в легких может вызвать пневмоконикозы. Все указанные поражения могут возникнуть, если сварку выполняют с грубым нарушением правил техники безопасности и охраны труда, касающихся обеспечения общей и местной вентиляции, применения индивидуальных средств защиты (масок, респираторов), особенно при сварке цветных металлов и их сплавов, а также при сварке в тесных, замкнутых отсеках при недостаточной вентиляции и т. п. существуют строгие требования в области вентиляции при сварочных работах. Для улавливания сварочного аэрозоля на стационарных постах, а где это возможно, и на нестационарных нужно устанавливать местные отсосы в виде вытяжного шкафа, вертикальной или наклонной панели равномерного всасывания, стола с подрешеточным отсосом и др. При сварке крупногабаритных серийных конструкций на кондукторах, манипуляторах и т. п. местные отсосы необходимо встраивать непосредственно в эти приспособления. При автоматической сварке под флюсом, в защитных газах, электрошлаковой сварке применяют устройства с местным отсосом газов.[9]

Если в цехе расход сварочных материалов превышает 0,2 г/ч на 1 м3 объема здания, должна быть устроена механическая, общеобменная вентиляция. При работе на нестационарных сварочных постах в замкнутых и полузамкнутых пространствах (отсеках) следует применять местные отсасывающие устройства типа эжекторов, высоковакуумных установок с обеспечением объема удаляемого воздуха от одного сварочного поста 400—500 м3/ч, но не менее 100—150 м3/ч, что обеспечивает допустимый уровень загрязненности воздуха.[9]

Предотвращение опасности взрывов. Опасность взрывов возникает при неправильной транспортировке, хранении и использовании баллонов со сжатыми газами, при проведении сварочных работ в различных емкостях без предварительного контроля степени их очистки и наличия в них остатков горючих веществ и т. д.[9]

При использовании баллонов со сжатыми газами необходимо соблюдать установленные меры безопасности: не бросать баллоны, не устанавливать их вблизи нагревательных приборов, не хранить вместе баллоны с кислородом и горючими газами, баллоны хранить в вертикальном положении. При замерзании влаги в редукторе баллона с СО2 отогревать его только через специальный электроподогреватель или обкладывая тряпками, намоченными в горячей воде. Категорически запрещается отогревать любые баллоны со сжатыми газами открытым пламенем, так как это почти неизбежно приводит к взрыву баллона.[9]

При производстве сварочных работ на емкостях, ранее использованных, требуется выяснение типа хранившегося продукта и наличие его остатков. Обязательна тщательная очистка сосуда от остатков продуктов и 2—3 - кратная промывка 10%-ным раствором щелочей, необходима также последующая продувка сжатым воздухом для удаления запаха, который может вредно действовать на сварщика.[9]

Категорически запрещается продувать емкости кислородом, что иногда пытаются делать, так как в этом случае попадание кислорода на одежду и кожу сварщика при любом открытом источнике огня вызывает интенсивное возгорание одежды и приводит к ожогам со смертельным исходом.[9]

Взрывоопасность существует и при выполнении работ в помещениях, имеющих большое количество пылевидных органических веществ (пищевой муки, торфа, каменного угля). Эта пыль при определенной концентрации может давать взрывы большой силы. Помимо тщательной вентиляции для производства сварочных работ в таких помещениях требуется специальное разрешение пожарной охраны.[9]

9.1. Предотвращение пожаров

 Опасность возникновения пожаров по этой причине существует в тех случаях, когда сварку выполняют по металлу, закрывающему дерево либо горючие изолировочные материалы, на деревянных лесах, вблизи легко воспламеняющихся материалов и т. п.  Все  указанные варианты сварки не должны допускаться.[12]

9.2.Предотвращение опасности поражения лучами электрической дуги

 Сварочная дуга является источником световых лучей, яркость которых может вызвать ожог незащищенных глаз при облучении их в течение всего 10—15 с. Более длительное воздействие излучения дуги может привести к повреждению хрусталика глаза и потере зрения. Ультрафиолетовое излучение вызывает ожоги глаз и кожи, подобные ожогам при прямом действии ярких солнечных лучей, инфракрасное может вызвать помутнение хрусталика глаза.[12]

Воздействие излучения дуги вредно не только для сварщиков, но и для подручных рабочих-сборщиков. Для предотвращения опасного поражения глаз обязательно применение защитных стекол — наиболее темных для сварщиков (для электрогазосварочных и вспомогательных работ используют темное стекло типа В, Г и Э, при электродуговой сварке – темное стекло типа С-3 – С-13, при газовой сварке и кислородной резке – темное стекло типа С-1 – С-4 по ГОСТ 12.4.080-79 ”ССБТ. Светофильтры стеклянные для защиты глаз от вредных излучений на производстве. Технические условия.”) и более светлых для вспомогательных рабочих, что должно обеспечить значительное (почти полное) поглощение вредных излучений, связанных с горением дуги. Особую опасность в смысле поражения глаз представляет световой луч квантовых генераторов (лазеров), так как даже отраженные лучи лазера могут вызвать тяжелое повреждение глаз и кожи. Поэтому лазеры имеют автоматические устройства, предотвращающие такие поражения, но при условии строгого соблюдения производственной инструкции операторами-сварщиками, работающими на этих установках. Защитные стекла, вставленные в щитки и маски, снаружи закрывают простым стеклом для предохранения их от брызг расплавленного металла. Щитки изготовляют из изоляционного металла — фибры, фанеры и по форме и размерам они должны полностью защищать лицо и голову сварщика (ГОСТ 1361—69).[12]

Для ослабления резкого контраста между яркостью дуги и малой яркостью темных стен (кабины) последние должны быть окрашены в светлые тона (серый, голубой, желтый) с добавлением в краску окиси цинка с целью уменьшения отражения ультрафиолетовых лучей дуги, падающих на стены.[12]

При работе вне кабины для защиты зрения окружающих, работающих сварщиков и вспомогательных рабочих должны применяться переносные щиты и ширмы.[12]

Интенсивность инфракрасного (теплового) излучения свариваемых изделий и сварочной ванны зависит от температуры предварительного подогрева изделий, их габаритов и конструкций, а также от температуры и размеров сварочной ванны. При отсутствии средств индивидуальной защиты воздействие теплового излучения может приводить к нарушениям терморегуляции вплоть до теплового удара. Контакт с нагретым металлом может вызвать ожоги.[12]

Предотвращение опасности поражения брызгами расплавленного металла и шлака. Образующиеся при дуговой сварке брызги расплавленного металла имеют температуру до 1800° С, при которой одежда из любой ткани разрушается. Для защиты от таких брызг обычно используют спецодежду (брюки, куртку и рукавицы) из брезентовой или специальной ткани. Куртки при работе не следует вправлять в брюки, а обувь должна иметь гладкий верх, чтобы брызги расплавленного металла не попадали внутрь одежды, так как в этом случае возможны тяжелые ожоги.[12]

Для защиты от соприкосновения с влажной, холодной землей и снегом, а также с холодным металлом при наружных работах и в помещении сварщики должны обеспечиваться теплыми подстилками, матами, подколенниками и подлокотниками из огнестойких материалов с эластичной прослойкой.[12]

Напряженность электромагнитных полей зависит от конструкции и мощности сварочного оборудования, конфигурации свариваемых изделий.

Характер их влияния на организм определяется интенсивностью и длительностью воздействия.[12]

Источником ультразвука могут являться плазмотроны, ультразвуковые генераторы, электроды и др. Действие ультразвука зависит от его спектральной характеристики, интенсивности и длительности воздействия.[12].

Источниками шума являются пневмоприводы, вентиляторы, плазмотроны, источники питания и др. Воздействие шума на организм зависит от спектральной характеристики и уровня звукового давления.[12]

Источником локальной вибрации у работников сборочно-сварочных цехов являются ручные пневматические инструменты, используемые для зачистки швов после сварки.[12]

Статическая нагрузка на верхние конечности при ручных и полуавтоматических методах сварки, металлов зависит от массы и формы электрододержателей, горелок, гибкости и массы шлангов, проводов, длительности непрерывной работы и др. В результате перенапряжения могут возникать заболевания нервно-мышечного аппарата плечевого пояса.[9]

При выборе технологических процессов сварки и предпочтение должно отдаваться тем, которые характеризуются наименьшим образованием опасных производственных факторов и минимальным содержанием вредных веществ в воздухе рабочей зоны.[9]

При невозможности применения безопасного и безвредного технологического процесса необходимо применять меры по снижению уровней опасных и вредных факторов до предельно допустимых значений.[9]

Содержание вредных веществ в воздухе рабочей зоны на рабочих местах должно соответствовать требованиям, указанным в ГОСТ 12.1.005.[9]

По степени воздействия на организм человека вредные вещества, в соответствии с классификацией ГОСТ 12.1.007, разделены на четыре класса опасности: 1 - вещества чрезвычайно опасные; 2 - вещества высокоопасные; 3 - вещества умеренно опасные; 4 - вещества малоопасные.[9]

Допустимая плотность потока энергии электромагнитного излучения оптического диапазона (ультрафиолетового, видимого, инфракрасного) на рабочих местах должна соответствовать требованиям, установленным соответствующими нормативными правовыми актами.[9]

Допустимые уровни звукового давления и эквивалентные уровни широкополосного шума на рабочем месте должны отвечать требованиям ГОСТ 12.1.003.[9]

Для тонального и импульсного шума допустимые эквивалентные уровни уменьшаются на 5 дБ.[9]

При эксплуатации установок кондиционирования, вентиляции и воздушного отопления допустимые эквивалентные уровни уменьшаются на 5 дБ.[9]

Для оценки воздействия различных уровней звука при разной их длительности применяется показатель эквивалентного уровня звука. При уровнях звука выше допустимых на 5 дБ работники должны быть снабжены средствами индивидуальной защиты.[9]

Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБ, а для импульсного шума 125 дБ.

Допустимые уровни ультразвука на рабочем месте оператора и в сварочных цехах в течение восьмичасового рабочего дня должны соответствовать требованиям ГОСТ 12.1.001.[9]

Допустимые уровни производственной локальной вибрации от вспомогательного оборудования должны соответствовать требованиям ГОСТ 12.1.012.[9]

При невозможности снижения уровней опасных и вредных факторов до предельно допустимых значений по условиям технологии запрещается производить сварку, наплавку и резку металлов без оснащения работника соответствующими средствами коллективной и индивидуальной защиты, обеспечивающими безопасность.[9]

9.3.Влияние сварочных производств на окружающую среду

Загрязнение воздушной среды возможно при работе вентиляционных вытяжных систем, обслуживающих посты полуавтоматической сварки в СО2, машины для наплавки порошковой проволокой и лентой, плазменной резки металлов и др.[11]

В соответствии со СНиП II-33-75* допустимое содержание пыли в воздухе, выбрасываемом в атмосферу (мг/м3), следует определять по формуле:[11]

С = (160 — 4*10-3L)*К, где L — расход удаляемого воздуха, м3/ч; К - коэффициент, равный 0,6.

Зная расход сварочных материалов, удельное выделение пыли и коэффициент одновременности работы сварщиков, равный 0,8, можно подсчитать максимальную концентрацию сварочного аэрозоля в выбрасываемом воздухе:

Св = 0.8Z/L,

где Z — количество выделяющегося аэрозоля, мг/ч, от сварочных установок, обслуживаемых данной системой вытяжной вентиляции производительностью L.[11]

Если Св > С, воздух должен подвергаться очистке.

Для очистки вентиляционных выбросов от сварочного аэрозоля могут быть использованы пластинчатые электрофильтры, обеспечивающие эффективность очистки около 0,95. Такими фильтрами целесообразно оборудовать крупные вентиляционные установки, к которым должны подключаться небольшие системы местной вытяжной вентиляции. При этом необходимо обеспечить очистку фильтров от осаждаемой сварочной пыли.[11]

На выбросной стороне вентиляционных установок необходимо устанавливать глушители абсорбционного типа (трубчатые или пластинчатые).[11]

     10. Организационно-экономический раздел

Капитальные  вложения  представляют  собой  затраты, направляемые  на  создание  и  воспроизводство  основных  фондов. В  их  состав  входят:

строительно-монтажные  работы;

затраты  на  приобретение  основных  фондов (станки, машины, оборудование  и  т.д.);

затраты  на  научно-исследовательские, опытно-конструкторские, проектно-изыскательские  работы  и  т.п.;

вложения  в  трудовые  ресурсы;

прочие  затраты.

В  расчёте  сравниваются  два  варианта  изготовления:

ручная  дуговая  сварка;

дуговая  сварка самозащитной порошковой проволокой

    Использование  полуавтоматической  сварки    взамен  ручной  сварки  покрытыми  электродами  повышает  производительность, обеспечивает  лучшие  условия  труда  и  снижает  требования  к  квалификации  сварщиков.

 Преобладающая  толщина  стенки  равна 6 мм. Марка  материала –Ст3сп. Годовая  программа  выпуска  составляет  10000 изделий.

Протяжённость  всех  швов  одного  изделия  составляет  4 метра. Принимая, что  скорость  ручной  сварки  составляет 6 метров/час, находим  число  сварщиков, необходимое  для  выполнения  годовой  программы. При  этом  принимаем  число  рабочих  часов  в  год  равным  2000 час.

          К= 8*10000/6*2000=7,2 (чел)

Принимаем, что  программу  выполняют 7 сварщиков  5 разряда. Оплата  каждого  сварщика  осуществляется  по  контракту  и  составляет  20 тыс. руб.

При сварке с использованием новой технологии  скорость  сварки  принимаем  равной  12 метров/час. Тогда  количество сварщиков составит

               К = 8*10000/12*2000 = 3,3чел.

 Принимаем одну сварочную установку, на  которой  работают  три  сварщика  3 разряда в три смены. Каждый  сварщик, работающий  на роботе, получает  по  контракту  15 тыс. руб.

В  существующих  условиях  сварка  изделий  осуществляется  вручную, что  снижает  конкурентоспособность  участка  по  следующим  основным  причинам:

малая  производительность, которая  определяется  величиной  сварочного  тока;

качество  шва  зависит  в  значительной  степени  от  квалификации  сварщика, что  приводит  к  нестабильным  свойствам  сварного  соединения;

большие  затраты  на  изготовление  изделия  и, как  следствие, более  высокая  стоимость  готового  продукта. Для  снижения  затрат  повышения  конкурентоспособности  предлагается  применить  полуавтоматическую  сварку  плавящимся  электродом  в  углекислом  газе. Это  позволит повысить  производительность, обеспечить  лучшие  условия  труда  и  снизить  требования  к  квалификации  сварщиков.

Расчёт  дополнительных  капитальных  вложений. Дополнительные  капитальные  вложения  необходимы  для   приобретения  дополнительного  оборудования, оснастки  и  инвентаря. При  этом  отсутствует  необходимость  вложений  в  здания, сооружения  и  передаточные  устройства, так  как  при  полуавтоматической  сварке  используются  существующие  производственные  площади.

Капитальные  вложения  при  техническом  перевооружении  состоят  из  требуемых  вложений  за  вычетом  ликвидационной  стоимости. Ликвидационная  стоимость  оборудования  определяется  с  учётом  рыночной  конъюнктуры. В  большинстве  случаев  эта  стоимость  незначительна  или  вообще  отсутствует  из-за  изношенности  оборудования. Поэтому  в  дальнейших  расчётах  ликвидационная  стоимость  оборудования  не  учитывается.

Для  внедрения  полуавтоматической  сварки  необходимо  дополнительно  приобрести  следующее  оборудование:

Источник питания фирмы BlueWeld  - оптовая  цена  100 тыс. руб. Для  полноты  учёта  сметной  стоимости  оборудования  целесообразно  полученный  итог  увеличить  на  10…20%  за  счёт  стоимости  неучтённого  оборудования, что  составит 20 тыс. руб. Итого  оптовая  цена одного поста оборудования  составляет  120 тыс. руб. Принимаем  затраты  на  проектирование  40,0 тыс. руб. Тогда  дополнительные  капитальные  вложения  на  оборудование  составят

              Коб= 40+ 120,(1,0+0,1+0,05+0,05) = 184 тыс. руб.

При  расчёте  затрат  на  оснастку  и  инвентарь  принимаем, что  эти  затраты  составят  20%  от  вложений  на  оборудование, т.е. равными  36,8 тыс. руб. Таким  образом, дополнительные  капитальные  вложения  при  внедрении  полуавтоматической  сварки  составят 220,8 тыс. руб.

  Расчёт  годовых  ткущих издержек

    Расход  основных  материалов.  Затраты  на  заготовки  в  обоих  вариантах  остаются  одинаковыми  и  равными  190 руб. на  одно  изделие. Из  технологической  части  работы  принято, что  длина  шва  составляет 4 м. Приняв  плотность  стали  равной  7,8 г/см3, получим  массу  наплавленного  металла  равной 0,775г. Тогда  масса  электродов, необходимых  на  изготовление  одного  изделия, составит  МЭ =0,775 *1,8 =1,4кг.  Затраты  на  электроды при стоимости за 1 кг равной 40 руб. составят  56,0 руб.  на  одно  изделие. Масса  проволоки, необходимой  для  сварки  одного  изделия, составляет  МПР = 0,775*1,2 =0,94 кг. Затраты  на  электродную  проволоку при стоимости 30 руб. за 1 кг составят  27,8 руб. на  одно  изделие.

Расход  вспомогательных  материалов.

     Затраты  на  электроэнергию  и затраты  на  изготовление  одного  изделия  при  выбранных  способах  сварки  будут  примерно  одинаковы. Поэтому  при  расчётах  стоимость  электроэнергии  принята  12,0 руб. на  одно  изделие.

Затраты  на  оплату  труда  основных  рабочих. При  ручной  сварке  годовой  фонд  оплаты  труда  составит

 ФТ =7*20*12=1680 тыс.руб.

Социальный  налог, принимая  его  равным  34%, составит  СН = 1680*0,34 = 598 тыс. руб.

    Годовые затраты при ручной дуговой сварке равны

        1680+598=2278 тыс. руб.

На  одно  изделие  при  ручной  сварке  заработная  плата, включая  социальный  налог, составляет  227,8 руб.

При  полуавтоматической  сварке  годовой  фонд  оплаты  труда  составит  ФП = 3*15,0*12 = 540 тыс. руб. Социальный  налог  составит  соответственно  СН = 540* 0,34 = 192,2тыс. руб.

   Годовой фонд оплаты труда составит при механизированной сварке 540+192,2=732,2 (тыс. руб).

На  одно  изделие  при  полуавтоматической  сварке  заработная  плата (включая  социальный  налог) составит  73,2руб.

Расходы  на  содержание  дополнительного  оборудования

Данная  статья  учитывает  только  расходы  на  содержание  и  эксплуатацию  дополнительного  оборудования, т.е.  относится  только  к  полуавтоматической  сварке. В  пересчёте  на  одно  изделие  эти  расходы  составят  12,0руб.

8. Цеховые  расходы  принимаем  одинаковыми  для  обоих  способов  и  равными  30%  от  фонда  заработной  платы  при  ручной  сварке. На  одно  изделие  цеховые  расходы  составят  68,3 руб.

По  результатам  расчётов  составлена  таблица 5.

Таблица 5                               Таблица  текущих  затрат

п/п

Статьи  затрат

    Ручная сварка

     Полуавтомат

1

Основные сварочные  материалы

      56,0

27,8

2

Вспомогательные  материалы

       -

-

3

Электроэнергия

      12,0

12,0

4

Зарплата, включая  соц.  Налог

       227,8

73,2

5

Расходы  на  сод.  Оборудования

        -

12,0

6

Цеховые  расходы

       68,3

68,3

Итого

       363,3

192,5

  

 Годовой экономический эффект составит

         Э = ((С1 + Ен*К) (С2 +Ен*К2))*А

         Э = (363,3(192,5+0,15*220,8*))10000 =1368,0 тыс. руб.

  Срок окупаемости равен (К2 – К1)/(С1 –С2) = 220,8/1368 = 0,16 года.  

 Конкурентоспособность  проекта

В  результате  внедрения  полуавтоматической  сварки  для  изготовления  изделия себестоимость  одного  изделия  снизится  на  40%  по  сравнению  с  ручной  сваркой. Снижение  себестоимости  произойдёт  за  счёт  уменьшения  фонда  заработной  платы  и, соответственно, социального  налога, а  также  за  счёт уменьшения  расходов  на  основные  материалы.

При  этом  потребуются  дополнительные  капитальные  вложения  в  сумме  220,8тыс. руб., срок  окупаемости  которых  менее  одного  года.

За  счёт  внедрения  полуавтоматической  сварки  может  быть  получен  годовой  экономический  эффект  1368 тыс. руб.

Конкурентоспособность  проекта  основывается  на  пониженных  затратах. Пониженные  затраты – способность  фирмы  разрабатывать, производить  и  сбывать  товар  более  эффективно, чем  конкуренты. Это  значит, что  упор  может  делаться  на  привлечение  покупателей (заказчиков)  за  счёт  относительной  дешевизны  своих  товаров  по  сравнению  с  аналогичными  изделиями  других  производителей.

Выводы

1.Приварка люка к стенке резервуара характеризуется  незначительными по длине швами.

2.Отличительной особенностью приварки люка к стенке резервуара является  механизированная сварка  проволокой  Св-08Г2С.

3.Производство  люка целесообразно осуществлять в производственных условиях,  а их установку на боковую стенку в монтажных условиях.

       4. Монтаж элементов резервуара осуществляется с использованием универсальной оснастки.

 5. Контроль качества, применяемый при производстве люка, удовлетворяет предъявляемым к ним требованиям.

        6. Мероприятия по безопасной жизнедеятельности, предложенные в дипломном проекте, обеспечивают безопасные условия труда.

         7. Экономический эффект, полученный в результате расчета, показывает целесообразность разработанной технологии.

              

Литература

1. Акулов А.И., Алехин В.П., Ермаков С.И. Технологии и оборудование сварки плавленой и термической резки: Учебник для вузов.-М.: Машиностроение, 2003, с.200

2. Аникиев В.А. Технологические аспекты охраны окружающей среды.-Л.: Энергия, 1980

3. Блинов А.Н. Сварные конструкции: учебник.- М.: Стойиздат, 1990.-246 с.

4. Бречак А.Л., Поканевич А.А. Определение экономической эффективности развития сварочного производства./Сварщик, №4, 2006. с. 18-19.

5. Безопасность жизнедеятельности/Под ред. проф. С.В. Белова.-М.: Высшая школа., 1999

6. Безопасность производственных процессов: справочник/Под ред. проф. С.В. Белова.-М.: Машиностроение, 1985

7. Глизманенко Д.А. Газовая сварка и резка металла. Учебник для индивидуальной и бригадной подготовки рабочих на производстве. Издание 5-е, переработанное и дополненное. -М.: Высшая школа, 1985.-168 с.

8. Гельфонд А.Л. Архитектурное проектирование общественных зданий и сооружений.- М.: Архитектура-С, 2006. – 280 с.

9. Долин П.А. Справочник по технике безопасности.–М.: Энергоавтомиздат, 1985

10.  Дубов А.А. Опыт стандартизации новых технологий и методов неразрушающего контроля во взаимодействии с Международным институтом сварки/Сварочное производство, №12, 2007. с. 5-6.

11.  Справочная книга по охране труда в машиностроении/Под. ред. О.Н. Русакова.-Л.: Машиностроение,1989

Система стандартов безопасности  труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны. ГОСТ 12.1.005-88. М.: Госстандарт

12. ПБ 03-605-03 статус на 2014г.


 

А также другие работы, которые могут Вас заинтересовать

24011. Обеспечение безопасности при проведении туристских походов 18.68 KB
  При необходимости члены МКК дают советы руководителям по планированию маршрута действиям на какихлибо сложных его участках однако техническая и тактическая подготовка участников похода остается вне зоны внимания МКК. Зачастую участники выполняют задания без участия руководителя группы. Здесь причины возникновения аварийных экстремал ных ситуаций можно разделить на три группы: возникающие по вине руководителя группы; возникающие по вине детей участников похода; природные факторы и несчастные случаи в походе. В походах с детьми как нигде...
24012. Опасности в различных видах туризма 18.29 KB
  Признаки лавиноопасности: обильный снегопад перепады температур наличие лавинных концов в нижней части различные валы камни вырванные деревьяМеры предосторожности: переход осуществлять в нижней части; страховка; если участок протяжённый нужно переходить по одному с помощью лавинного шнура обязательно нужен смотритель; желательно проходить утром либо ночью. Меры предосторожности: спланировать переход должна быть тактика перехода выбор места переправы время и способ переправы переправу нужно планировать на утреннее часы. Меры...
24013. ПРАВОВЫЕ И ЭТИЧЕСКИЕ НОРМЫ ЖУРНАЛИСТСКОЙ ДЕЯТЕЛЬНОСТИ 44.83 KB
  19 ВДПЧ: свобода убеждений и выражения их сбора и распространения информации и идей любыми средствами независимо от государственных границ.29 гарантия свободы мысли и слова свобода искать получать передавать и распространять информацию гарантия свободы массовой информации запрет на цензуру. Журналист имеет право: 1 искать запрашивать получать и распространять информацию; 2 посещать государственные органы и организации предприятия и учреждения либо их прессслужбы; 3 быть принятым должностными лицами в связи с запросом...
24014. МЕДИАСОЦИОЛОГИЯ И МЕДИАПСИХОЛОГИЯ 57.93 KB
  Журналист обязан иметь при себе достаточный запас ручек на случай если какаялибо из них подведет в нужный момент и как минимум пару блокнотов: для записи официальных бесед и для фиксации неофициальной информации. Диктофон фиксирует ход беседы при непосредственном контакте с собеседником но не имеет возможности фиксировать мысли журналиста возникающие по ходу беседы поэтому блокнот остается непременным атрибутом журналиста всегда он помогает при переработке поступающей информации. При сборе информации он контактирует с индивидуальным...
24015. ИСТОРИЯ ОТЕЧЕСТВЕННОЙ ЖУРНАЛИСТИКИ 211.12 KB
  16 декабря этот указ был напечатан а уже 17 декабря появился в свет первый номер новой газеты Ведомости и его следует считать первенцем русской периодики. 27 декабря вышел следующий номер газеты имевший особое название Юрнал или поденная роспись что в мимошедшую осаду под крепостью Нотебурхом чинилось сентября с 26 числа в 1702 году. Очередной номер газеты изданный 2 января 1703 г. Эти лаконичные и разнообразные сообщения первого номера русской газеты полны глубокого смысла и подбор их великолепен.
24016. ИСТОРИЯ ЗАРУБЕЖНОЙ ЖУРНАЛИСТИКИ 139.3 KB
  Подзаголовок газеты: Казуистическая газета . Успех газеты был велик количество писем все росло. Острота вопроса в том что все это были газеты и журналы разных направлений. Ричард Стиль бывший в ту пору редактором официальной газеты решил использовать созданную Свифтом маску для издания нового журнала в 1709 г.
24017. ОБЩАЯ ТЕОРИЯ ЖУРНАЛИСТИКИ 73.5 KB
  Новостные блоки в СМИ и начинаются с сенсаций делая безнадежными поиски смысла в эфире. Общественное мнение и СМИ: диалектика взаимодействия.Индивидуальную картину мира человека создают СМИ. Уклон в развлечение во всех СМИ особенно в ТВ.
24018. ЖУРНАЛИСТИКА В СОВРЕМЕННОМ ИНФОРМАЦИОННОМ ПРОСТРАНСТВЕ 69.31 KB
  В информационном же пространстве разворачивается истинная журналистика не ограниченная правилами и цензурой пример СМИ vs СМК. Последствия информационнопсихологического воздействия СМИ глубокие изменения массового сознания. СМИ и информационное общество.общва поставила вопрос о роли в нем СМИ.
24019. ОРГАНИЗАЦИЯ РАБОТЫ СМИ 128.94 KB
  В других статьях определяется статус редакции учредителя и издателя их права обязанности и взаимоотношения. В Уставе наряду с другими сторонами ее статуса определяются взаимные права и обязанности учредителя редакции и возглавляющего ее главного редактора. Учредитель утверждает устав редакции и или заключает с ней или ее главным редактором договор. В Законе указывается что учредитель также может выступать в качестве редакции издателя распространителя собственника имущества редакции.