934

Тепловой баланс

Контрольная

Производство и промышленные технологии

Температура внутренней поверхности кладки. Потери теплоты через футеровку. Потери теплоты через окна. Теплота экзотермических реакций. Температура уходящих из томильной зоны газов. Потери теплоты с охлаждающей жидкостью. Температуру внутренней поверхности стен.

Русский

2013-01-06

558.5 KB

27 чел.

Тепловой баланс

Томильная зона

Приходные статьи

1. Теплота горения топлива

2.Теплота, вносимая подогретым воздухом

3.Теплота экзотермических реакций

Тогда теплота экзотермических реакций составит

Поскольку это количество тепла выделилось при окислении металла за все время нагрева и выдержки, принимаем, что в период выдержки выделяется половина тепла, т.е.

Расходные статьи

1. Теплота технологического продукта

Начальная средняя по массе температура ; энтальпия хромоникелевой стали при такой температуре . Конечная средняя по массе температура , энтальпия стали при такой температуре  [].

Тогда

.

2. Теплота, уносимая уходящими газами

Температура уходящих из томильной зоны газов равна 1339, тогда при этой температуре теплоемкость газов составит:

.

.

3. Потери теплоты через футеровку

СВОД

Температура внутренней поверхности кладки равна . Примем температуру окружающее среды равной , температуру наружной поверхности . Площадь свода (с учетом толщины стен) , толщина .

Средняя температура шамотного слоя равна

При этой температуре теплоемкость шамота равна []

Тогда потери тепла через свод составят

.

СТЕНЫ

Температуру внутренней поверхности стен принимаем равной , температуру наружной поверхности . Стены состоят из слоя шамота толщиной  и слоя шамота-легковеса толщиной .

С учетом толщины футеровки площадь поверхности стен равна:

торцевой (6,5 + 2∙0,46)∙(1,2 + 0,3) = 11,13 м2

боковых 2∙(1,56 + 0,46)∙(1,2 + 0,3) = 6,06 м2

общая .

Средняя температура слоя шамота равна

,

а слоя шамота – легковеса

.

где  - температура на границе раздела.

Коэффициенты теплопроводности материалов:

При стационарном режиме

.

Подставляя значения коэффициентов теплопроводности, получим

.

Решая это уравнение, получим , тогда

,

,

,

,

.

Потери тепла через стены составят

.

ПОД

Температуру внутренне поверхности пода принимаем равной , наружной поверхности . Под состоит из слоя высокоглиноземистого кирпича толщиной и слоя шамота-легковеса толщиной . Площадь пода равна площади свода .

Аналогично вышеприведенному расчету для стен находим .

,

,

,

,

.

Потери тепла через под печи равны

.

Общие потери тепла теплопроводностью через футеровку печи равны

.

4.Потери теплоты через окна

Потери теплоты через открытое окно определяется следующим уравнением

, кВт

Принимаем среднюю температуру печи равной , а температуру цеха .

Размеры окна

  

Площадь окна  м2 

,    

коэффициент Ф = 0,65

Принимаем, что окна открыты все время работы печи,

Количество окон в томильной зоне равно 2 смотровых + 4 рабочих = 6 шт.

Тогда потери теплоты через окна составят

Суммарные потери в окружающую среду

5. Потери теплоты с охлаждающей жидкостью

.

В данной печи водоохлаждаемыми являются только шагающие балки. Примем длину балки 1600 мм, ширину 1500, высоту труб – 1000 мм, диаметр водоохлаждающих труб 80 мм. Число балок в томильной зоне – 4.

Площадь водоохлаждаемой поверхности равна , а плотность теплового потока при 1180 .

Тогда потери теплоты с охлаждением составят

.

Расход топлива в томильной зоне

.

Сварочная зона

Приходные статьи

1. Теплота горения топлива

2.Теплота, вносимая подогретым воздухом

3.Теплота экзотермических реакций

4. Теплота, вносимая продуктами сгорания из томильной зоны

.

Расходные статьи

1. Теплота технологического продукта

Начальная средняя по массе температура ; энтальпия хромоникелевой стали при такой температуре . Конечная средняя по массе температура , энтальпия стали при такой температуре  [].

Тогда

.

2. Теплота, уносимая уходящими газами

Температура уходящих из томильной зоны газов равна 1055, тогда при этой температуре теплоемкость газов составит:

.

.

3. Потери теплоты через футеровку

СВОД

Температура внутренней поверхности кладки равна . Примем температуру окружающее среды равной , температуру наружной поверхности . Площадь свода (с учетом толщины стен) , толщина .

Средняя температура шамотного слоя равна

При этой температуре теплоемкость шамота равна []

Тогда потери тепла через свод составят

.

СТЕНЫ

Температуру внутренней поверхности стен принимаем равной , температуру наружной поверхности . Стены состоят из слоя шамота толщиной  и слоя шамота-легковеса толщиной .

С учетом толщины футеровки площадь поверхности стен равна:

.

Средняя температура слоя шамота равна

,

а слоя шамота – легковеса

.

где  - температура на границе раздела.

Коэффициенты теплопроводности материалов:

При стационарном режиме

.

Подставляя значения коэффициентов теплопроводности, получим

.

Решая это уравнение, получим , тогда

,

,

,

,

.

Потери тепла через стены составят

.

ПОД

Температуру внутренне поверхности пода принимаем равной , наружной поверхности . Под состоит из слоя высокоглиноземистого кирпича толщиной  и слоя диатомита толщиной . Площадь пода равна площади свода .

Аналогично вышеприведенному расчету для стен находим .

,

,

,

.

Потери тепла через под печи равны

.

Общие потери тепла теплопроводностью через футеровку печи равны

.

4.Потери теплоты через окна

Принимаем среднюю температуру печи равной , а температуру цеха .

Количество окон в сварочной зоне равно (3 смотровых + 6 рабочих)∙2 = 18 шт.

Тогда потери теплоты через окна составят

Суммарные потери в окружающую среду

5. Потери теплоты с охлаждающей жидкостью

Количество балок в сварочной зоне – 8, тогда площадь составляет , а плотность теплового потока при 896 .

Тогда потери теплоты с охлаждением составят

.

Расход топлива в сварочной зоне

.

Методическая зона

Приходные статьи

1. Теплота горения топлива

2.Теплота, вносимая подогретым воздухом

3. Теплота, вносимая продуктами сгорания из сварочной зоны

.

Расходные статьи

1. Теплота технологического продукта

Начальная средняя по массе температура ; энтальпия хромоникелевой стали при такой температуре . Конечная средняя по массе температура , энтальпия стали при такой температуре  [].

Тогда

.

2. Теплота, уносимая уходящими газами

Температура уходящих из томильной зоны газов равна 759, тогда при этой температуре теплоемкость газов составит:

.

.

3. Потери теплоты через футеровку

СВОД

Температура внутренней поверхности кладки равна . Примем температуру окружающее среды равной , температуру наружной поверхности . Площадь свода (с учетом толщины стен) , толщина .

Средняя температура шамотного слоя равна

При этой температуре теплоемкость шамота равна []

Тогда потери тепла через свод составят

.

СТЕНЫ

Температуру внутренней поверхности стен принимаем равной , температуру наружной поверхности . Стены состоят из слоя шамота толщиной  и слоя диатомита толщиной .

С учетом толщины футеровки площадь поверхности стен равна:

торцевой (6,5 + 2∙0,46)∙(1,2 + 0,3) = 11,13 м2

боковых 2∙1,99∙(1,2 + 0,3) = 5,97 м2

общая .

Средняя температура слоя шамота равна

,

а слоя диатомита

.

где  - температура на границе раздела.

Коэффициенты теплопроводности материалов:

При стационарном режиме

.

Подставляя значения коэффициентов теплопроводности, получим

.

Решая это уравнение, получим , тогда

,

,

,

,

.

Потери тепла через стены составят

.

ПОД

Температуру внутренне поверхности пода принимаем равной , наружной поверхности . Под состоит из слоя высокоглиноземистого кирпича толщиной  и слоя диатомита толщиной . Площадь пода равна площади свода .

Аналогично вышеприведенному расчету для стен находим .

,

,

,

.

Потери тепла через под печи равны

.

Общие потери тепла теплопроводностью через футеровку печи равны

.

4.Потери теплоты через окна

Принимаем среднюю температуру печи равной , а температуру цеха .

Количество окон в методической зоне равно (1 смотровое + 2 рабочих)∙2 = 6 шт.

Тогда потери теплоты через окна составят

Суммарные потери в окружающую среду

5. Потери теплоты с охлаждающей жидкостью

Число балок в методической зоне – 4.

Площадь водоохлаждаемой поверхности равна , а плотность теплового потока при 316 .

Тогда потери теплоты с охлаждением составят

.

Расход топлива в методической зоне

.

Печь

Приходные статьи

Теплота, вносимая подогретыми материалами

, при этой температуре .

.

Расходные статьи

1. Потери теплоты с технологическими отходами

.

Температура окалины равна температуре поверхности стали в конце томильной зоны, т.е. , теплоемкость .

.

2. Потери теплоты от механической неполноты сгорания

.

3. Неучтенные потери

.

Сведем полученные данные в табл.1

Таблица 1

Зональный тепловой баланс нагревательной печи со сводовым отоплением

Статьи теплового баланса

Для зоны

Для печи

томиль- ной

свароч-ной

методи-ческой

кВт

%

Химическая теплота горения топлива

2702

8021

1510

12233

81,90

Теплота, вносимая подогретым воздухом

434

1288

243

1965

13,16

Теплота, вносимая продуктами горения

-

1875

5673

-

-

Теплота, вносимая нагретыми материалами

-

-

-

111

0,74

Теплота экзотермических реакций

314

314

-

628

4,20

ПРИХОД ТЕПЛОТЫ

3450

11498

7426

14937

100

Теплота технологического продукта

660

4290

2586

7536

49,81

Теплота, уносимая уходящими газами

1875

5673

4514

4514

29,8

Потери теплоты в окр. среду через футеровку

94

156

79

329

2,2

Потери теплоты в окр. среду через окна

320

580

47

947

6,26

Потери теплоты с охлаждающей жидкостью

500

800

200

1500

9,91

Потери теплоты с технологи- ческими отходами

-

-

-

145

0,96

Потери теплоты от механиче- ской неполноты сгорания

-

-

-

30

0,20

Неучтенные потери

-

-

-

128

1

РАСХОД ТЕПЛОТЫ

3449

11499

7426

15129

100

 

 

 

 

 

 

Процент ошибки, %

1,27

 

 

 

 


 

А также другие работы, которые могут Вас заинтересовать

32424. Понятие ассиметричной криптографии, схемы её практического использования 103.05 KB
  2 При использовании АК каждый пользователь обладает парой ключей дополняющих друг друга ключей – открытым и личным. Каждый из входящих в пару ключей подходит для расшифровки сообщений зашифрованных с помощью другого ключа из пары.
32425. Алгоритм Диффи-Хэлмана, RSA 17.9 KB
  Основан на односторонней криптографической функции: P – простое число – тоже простое число. Пользователь А выбирает число Х B число Y. Число N опубликовывается P и Q держатся в тайне. Число целых чисел меньших N и взаимно простых по отношению к N.
32426. Контроль целостности, хэш-функции, российский стандарт хэш-функции 18.11 KB
  Поэтому на практике для контроля используется хэшфункция. Хэшфункция делится на 2 класса: с ключом и без ключа. Значение хэшфункции с ключом может вычислить лишь тот кто знает ключ.
32427. Понятие, стандарты, реализация электронной подписи 965.58 KB
  В симметричной криптографии существует проблема электронной подписи – необходимо чтобы получатель а в случае разбирательств и третья сторона могли убедиться в авторстве сообщения и его неизменности. Электронная подпись вводится так как необходимо: Предотвратить отказ от посланного сообщения Защититься от модификации присланного сообщения Предотвратить подделку сообщения Предотвратить отправку сообщения от чужого имени Предотвратить перехват сообщения с целью его модификации Предотвратить повтор сообщений Подпись создается с...
32428. Сертификаты, СА, SSL, аутентификация с помощью сертификатов 397.63 KB
  Структура сертификата: Оговаривается стандартом Х509 последняя3я версия которого появилась в 1996 году. Стандарт оговаривает следующие компоненты сертификата: Номер версии Уникальный порядковый номер Стандарты ЭЦП и хэшфункция используемые для подписи сертификата Имя субъекта и его организация. Для аннулирования сертификата необходимы следующие причины: потеря ЛК изменение места работы Внешнее коммерческое СА используется: Когда действительность ключа должна быть подтверждена доверенной 3й стороной Не хватает...
32429. Стеганография(СГ). Цифровые водяные знаки 18.79 KB
  форматы либо избыточность аудио графической информации. В первом случаем можно использовать для упрятывания информации зарезервированные поля компьютерного формата данных. : небольшое количество информации низкая степень скрытности. Виды стеганографии: Суррогатная – данные информации обычно шумят и необходимо заменять шумящие биты скрываемой информацией.
32430. Направления в области ЗИ от НСД , Показатели защищенности СВТ, порядок оценки класса защищенности СВТ, понятие и подсистемы АС , Классификация СВТ и АС по уровню защищенности от НСД 1.07 MB
  Первое связано с СВТ второе – с АС. СВТ – средства вычислительной техники. СВТ совокупность программ и технических элементов систем обработки данных способная функционировать как самостоятельно так и в составе других систем.
32431. Классификация СЗИ по уровню контроля отсутствия недекларируемых воздействий 20.5 KB
  Классификация распространяется на ПО предназначенное для защиты информации ограниченного доступа. Для ПО используемого при защите информации отнесенной к государственной тайне должен быть обеспечен уровень контроля не ниже третьего. Самый высокий уровень контроля первый достаточен для ПО используемого при защите информации с грифом ОВ. Второй уровень контроля достаточен для ПО используемого при защите информации с грифом CC.
32432. Биометрические методы идентификации 19.11 KB
  Располагается на расстоянии 50 см и сравнивает ткани вокруг зрачка Стандарты биометрической аутентификации можно разделить на несколько иерархических категорий: I Стандарты определяющие требования для систем использующих биометрические технологии II Стандарты определяющие требования к процедуре использования биометрического распознавания в различных областях III Стандарты определяющие программный интерфейс PI для разработки биометрических систем IV Стандарты определяющие единый формат биометрических данных V Стандарты представления и...