9342

Гидравлический расчет нефтебазовых коммуникаций

Контрольная

Производство и промышленные технологии

Гидравлический расчет нефтебазовых коммуникаций Задание. Вариант 1. Выполнить гидравлический расчет технологических коммуникаций для слива нефтепродуктов из железнодорожных цистерн через нижнее сливное устройство при следующих исходных данных: Gмес....

Русский

2013-03-02

294.5 KB

60 чел.

Гидравлический расчет нефтебазовых коммуникаций

Задание.

Вариант 1.

Выполнить гидравлический расчет технологических коммуникаций для слива нефтепродуктов из железнодорожных цистерн через нижнее сливное устройство при следующих исходных данных:

Gмес.макс.=30100 т;

ν=1,98 сСт;

ρ=787 кг/м3;

Δz= 5м;

hвзл.=10,5м (максимальный уровень взлива нефтепродукта в резервуар);

lвс=60 м, lнаг=136 м.

Решение

1 Определяем требуемое количество сливных устройств

,

где Gмес.макс. - месячный грузооборот, т;

      Vц – объем цистерн, примем равной 60м3;

       ρ – плотность нефтепродукта, т/м3;

       

Полученное значение округляем в большую сторону, следовательно n=22 шт.

  1.  Для полученного числа сливных устройств вычерчивается технологическая схема (рисунок 1).

Рисунок 1 – Технологическая схема нефтебазовых коммуникаций.

3  Технологическая схема разбивается на участки, в пределах которых расход постоянен:

I – устройство нижнего слива;

II – коллектор;

III – всасывающий трубопровод;

IV – нагнетательный трубопровод.

4  Определяем значения коэффициентов местных сопротивлений для каждого участка и сводим их в таблицу 1.

Таблица 1 – Перечень местных сопротивлений и значения их коэффициентов

Наименование

местных

сопротивлений

Значение

ζi

УСН

Коллектор

Всасыв. т/п

Нагнетат.т/п

кол-

во

Σζ

кол-

во

Σζ

кол-

во

Σζ

кол-

во

Σζ

1

2

3

4

5

6

7

8

9

10

Сливн.приб.

1,3

1

1,3

Плавный повор. на 900

0,69

6

4,14

1

0,69

1

0,69

2

1,38

Поворотное устройство

2

2

4

Тройник на слияние

3

6

18

Задвижка

0,5

3

1,5

2

1

Фильтр

1,7

1

1,7

Вход в резервуар

1

1

1

Всего

9,44

18,69

3,89

3,38

5  Определяем потери напора для каждого участка.

Участок I

1  Определяем расход жидкости через устройство

,

где  Vц – объем цистерн, примем равной 60м3;

        τ – среднее время слива одной цистерны, примем равной 80 мин;

.

2  Определяем ориентировочный диаметр сливного устройства

,

где w0 – ориентировочная скорость перекачки, зависит от вязкости и назначения трубопровода.

При ν ≤ 11,5·10-6 м2/с, w0 вс=1,5 м/с, w0 наг=2,5 м/с.

.

Полученное значение d0 округляем до ближайшего по ГОСТу: d0ГОСТ=150мм.

3  Определяем скорость движения жидкости

.

4  Определяем параметр Re

.

5  Определяем переходные числа Re

,   kэ=0,15мм;

 

6  Определяем коэффициент гидравлического сопротивления λ

ReI < Re < ReII, следовательно режим течения турбулентный, зона смешанного трения. Для расчета гидравлического сопротивления λ будем использовать формулу Альтшуля

.

7  Определяем приведенную длину нижнего сливного устройства

.

8  Определяем потери напора в нижнем сливном устройстве

.

Участок II

1  Определяем расход жидкости через коллектор

,

где  N – количество сливных устройств, подключаемых к коллектору

.

2  Определяем ориентировочный диаметр коллектора

.

Полученное значение d0 округляем до ближайшего по ГОСТу: Выбираем сварную трубу диаметром 273мм и толщиной стенки 4мм, d0=273-2·4=265мм.

3  Определяем скорость движения жидкости

.

4  Определяем параметр Re

.

5  Определяем переходные числа Re

,   kэ=0,15мм;

 

6  Определяем коэффициент гидравлического сопротивления λ

ReI < Re < ReII, следовательно режим течения турбулентный, зона смешанного трения. Для расчета гидравлического сопротивления λ будем использовать формулу Альтшуля

.

7  Определяем приведенную длину коллектора

.

8  Определяем потери напора в коллекторе

,

где k – коэффициент неравномерности, зависит от режима течения жидкости.

Участок III

1  Определяем расход жидкости через всасывающий трубопровод

,

где  N – количество сливных устройств, подключаемых к всасывающему трубопровоу;

.

2  Определяем ориентировочный диаметр всасывающего трубопровода

Полученное значение d0 округляем до ближайшего по ГОСТу: Выбираем сварную трубу диаметром 351 мм и толщиной стенки 4мм. d0=351-2·4=343мм.

3  Определяем скорость движения жидкости

.

4  Определяем параметр Re

.

5  Определяем переходные числа Re

,   kэ=0,15мм;

 

6  Определяем коэффициент гидравлического сопротивления λ

ReI < Re < ReII, следовательно режим течения турбулентный, зона смешанного трения. Для расчета гидравлического сопротивления λ будем использовать формулу Альтшуля

.

7  Определяем приведенную длину всасывающего трубопровода

.

8  Определяем потери напора во всасывающем трубопроводе

.

Участок IV

1  Определяем ориентировочный диаметр нагнетательного трубопровода

Полученное значение d0 округляем до ближайшего по ГОСТу: Выбираем сварную трубу диаметром 273мм и толщиной стенки 4мм. d0=273-2·4=265мм.

2  Определяем скорость движения жидкости

.

3  Определяем параметр Re

.

4  Определяем переходные числа Re

,   kэ=0,15мм;

 

5  Определяем коэффициент гидравлического сопротивления λ

ReI < Re < ReII, следовательно режим течения турбулентный, зона смешанного трения. Для расчета гидравлического сопротивления λ будем использовать формулу Альтшуля

.

6  Определяем приведенную длину нагнетательного трубопровода

.

7  Определяем потери напора в нагнетательном трубопроводе

.

6  Определяем полные потери напора

При пустом резервуаре

При полном резервуаре

По Q и H подбираем насос.

Для полученных H=21,257 м и Q=0,1375м3/с=137,5л/с подбираем насос 8НДв с диаметром рабочего колеса D= 500 мм (рисунок 2).

7   По программе Paket 1 определяем потери напора на участках коммуникаций при различных значениях расхода. Результаты расчета сводим в таблицу 2.

Таблица 2 – Потери напора на участках коммуникаций

УСН

Коллектор

Всас. т/п

Нагнет. т/п

Полные потери напора

Потери в коммуни-кациях при пустом резервуаре

Потери в коммуни-кациях при заполненном резервуаре

Q

H

Q

H

1/3H

Q

H

Q

H

1

2

3

4

5

6

7

8

9

10

11

12

10

0

50

0,2

0,06666667

90

0

90

0,5

0,56666667

5,566667

16,06667

20

0,1

100

0,6

0,2

180

0,1

180

2

2,4

7,4

17,9

30

0,1

150

1,3

0,43333333

270

0,3

270

4,3

5,13333333

10,13333

20,63333

40

0,2

200

2,3

0,76666667

360

0,5

360

7,5

8,96666667

13,96667

24,46667

45

0,258

225

2,82

0,94

405

0,651

405

9,48

11,4571

16,4571

26,9571

50

0,3

250

3,5

1,16666667

450

0,8

450

11,6

13,8666667

18,86667

29,36667

60

0,5

300

5

1,66666667

540

1,1

540

16,5

19,7666667

24,76667

35,26667

70

0,6

350

6,8

2,26666667

630

1,5

630

22,3

26,6666667

31,66667

42,16667

По полученным результатам строим совмещенную характеристику трубопровода и насоса (рисунок 3).

Рисунок 2 – Характеристика насоса 8НДв – Нм; n=960 об/мин

                1 – потери напора в коммуникациях при заполненном резервуаре

                2 – потери напора в коммуникациях при пустом резервуаре

                3 – характеристика насоса 8НДв с диаметром рабочего колеса D= 500мм

Рисунок 3 – Совмещенная характеристика трубопровода и насоса

Вывод: В процессе слива цистерн расход в коммуникациях изменяется от    

Q1= 582 м3/ч до Q2=496 м3/ч.


 

А также другие работы, которые могут Вас заинтересовать

40120. Свойства коэффициентов прямых материальных затрат в МОБ. Определение косвенных и полных материальных затрат 40.5 KB
  Свойства коэффициентов прямых материальных затрат в МОБ. Определение косвенных и полных материальных затрат. Коэффициент пропорциональности затрат к выпуску в денежном выражении коэффициент прямых материальных затрат. Матрица А ={ij} является матрицей коэффициентов прямых затрат.
40121. Основные понятия теории баз данных: объект, свойство, связь. Диаграмма «сущность-связей». Логическая, физическая, концептуальная схемы базы данных 53.5 KB
  Основные понятия теории баз данных: объект свойство связь. Логическая физическая концептуальная схемы базы данных Информационная система это система реализующая автоматический сбор обработку и манипулирование данными и включающая в себя технические средства обработки данных программное обеспечение и соответствующий персонал. Структурирование данных это введение согласований о способах представления данных. База данных поименованная совокупность данных отражающая состояние объектов и их отношений в рассматриваемой области.
40122. Реляционная модель данных. Основные понятия: отношение, кортеж, домен. Получение нормальных форм отношений из диаграммы «сущность-связь». Реляционная алгебра и ее основные понятия 78 KB
  Реляционная модель данных отличается удобным для пользователя табличным представлением и доступом к данным. Она является совокупностью простейших двумерных таблиц – отношений. В реляционной модели достигается гораздо более высокий уровень абстракции данных, чем в иерархической или сетевой. Это обеспечивается за счет использования математической теории отношений (реляционная алгебра).
40123. Реляционная алгебра, основные операторы реляционной алгебры. Связь языка SQL с операторами реляционной алгебры 100.5 KB
  Основная идея реляционной алгебры состоит в том что коль скоро отношения являются множествами то средства манипулирования отношениями могут базироваться на традиционных теоретикомножественных операциях дополненных некоторыми специальными операциями специфичными для баз данных совокупность которых образует полную алгебру отношений. В состав теоретикомножественных операций входят операции: Объединения отношений. При выполнении операции объединения двух отношений производится отношение включающее все кортежи входящие хотя бы в одно из...
40124. Реляционная модель данных. Теория нормализации. Нормальные формы: первая, вторая, третья, Бойса-Кодда 50 KB
  Реляционная модель данных отличается удобным для пользователя табличным представлением и доступом к данным. В реляционной модели достигается гораздо более высокий уровень абстракции данных чем в иерархической или сетевой. К числу достоинств реляционного подхода можно отнести: наличие небольшого набора абстракций которые позволяют сравнительно просто моделировать большую часть распространенных предметных областей и допускают точные формальные определения оставаясь интуитивно понятными; наличие простого и в то же время мощного...
40125. Физическая организация баз данных. Файлы: последовательные, с прямым доступом, с хеш-адресацией, индексно-последовательные, В-деревья 78 KB
  Предполагается что для доступа к iой записи нужно просмотреть все i1 записи. Последовательный доступ с фиксированной длиной записи. Картинка i = 0 i 1L Если записи располагаются в оперативной памяти то это массив. Если записи расположены на диске то порядок ввода вывода данных зависит от языка программирования.
40126. Вычислительная машина 97.5 KB
  Машина Шикарда умела складывать и вычитать шестизначные числа оповещая звонком о переполнении. Оригинальная машина была утеряна до двадцатого столетия но в 1960 году была построена её точная работающая копия. Машина Паскаля позволяла выполнять не только сложение но и другие операции однако при этом требовала применения довольно неудобной процедуры повторных сложений.
40127. Операционная система 39.5 KB
  С 1990х наиболее распространенными операционными системами являются ОС семейства Microsoft Windows и UNIXподобные системы. Windows 2000 в полной мере использует возможности машин с несколькими процессорами. Windows 2000 способна закрепить каждый поток за отдельным процессором и тогда два потока исполняются действительно одновременно. Ядро Windows 2000 полностью поддерживает распределение процессорного времени между потоками и управление ими на таких системах.
40128. Языки программирования и их классификация 66 KB
  При первом способе его началом является пара символов а окончанием последний символ строки: Это комментарий При втором способе его началом является пара символов а окончанием пара символов: Еще один пример комментария В C различают три группы типов данных: фундаментальные типы встроенные типы и типы определяемые пользователем. Фундаментальные типы делятся на...