93708

Стафилококки. Общая характеристика свойств. Факторы патогенности. Токсины, образуемые стафилококками, генетический контроль их синтеза. Современная классификация стафилококков и ее принципы

Доклад

Медицина и ветеринария

Современная классификация стафилококков и ее принципы. Факторы патогенности стафилококков. Это свойство стафилококков обусловлено наличием у них большого комплекса факторов патогенности. Факторы адгезии прикрепление стафилококков к клеткам тканей обусловлено их гидрофобностью чем она выше тем сильнее проявляются...

Русский

2015-09-04

14.9 KB

2 чел.

Стафилококки. Общая характеристика свойств. Факторы патогенности. Токсины, образуемые стафилококками, генетический контроль их синтеза. Современная классификация стафилококков и ее принципы.

Стафилококки — грамположительные, правильной геометрической формы шаровидные клетки диаметром 0,5—1,5 мкм, располагающиеся обычно в виде гроздьев, каталазопозитивны, восстанавливают нитраты в нитриты, активно гидролизуют белки и жиры, сбраживают в анаэробных условиях глюкозу с образованием кислоты без газа. Обычно могут расти в присутствии 15 %-ного NаС1 и при температуре 45 °С. Не имеют жгутиков, не образуют спор. Стафилококки — факультативные анаэробы. Стафилококки не требовательны к питательным средам, хорошо растут на обычных средах, температурный оптимум для роста 35—37 °С, рН 6,2-8,4 Колонии круглые, 2—4 мм в диаметре, с ровными краями, выпуклые, непрозрачные, окрашены в цвет образуемого пигмента. Рост в жидкой культуре сопровождается равномерным помутнением, со временем выпадает рыхлый осадок. При росте на обычных средах стафилококки не образуют капсулы, при посеве уколом в полужидкий агар с плазмой или сывороткой большинство штаммов S. aureus образует капсулу.

Факторы патогенности стафилококков. Стафилококки могут поражать любую ткань, любой орган. Это свойство стафилококков обусловлено наличием у них большого комплекса факторов патогенности.

Факторы адгезии — прикрепление стафилококков к клеткам тканей обусловлено их гидрофобностью (чем она выше, тем сильнее проявляются адгезивные свойства), а также адгезивными свойствами полисахаридов, возможно также белка А, и способностью связывать фибронектин (рецептор некоторых клеток).

Разнообразные ферменты, играющие роль факторов «агрессии и защиты»: плазмокоагулаза (главный фактор патогенности), гиалуронидаза, фибринолизин, ДНКаза, лизоцимоподобный фермент, лецитиназа, фосфатаза, протеиназа и т. д.

Комплекс секретируемых экзотоксинов:

а) мембраноповреждающие токсины — а, b, d и у.

б) эксфолиативные токсины А и В различают по антигенным свойствам, отношению к температуре (А — термостабилен, В — термолабилен), локализации генов, контролирующих их синтез (А контролируется хромосомным геном, В — плазмидным). Нередко у одного и того же штамма синтезируются оба эксфолиатина, С этими токсинами связана способность стафилококков вызывать пузырчатку у новорожденных, буллезное импетиго, скарлатиноподобную сыпь;

в) истинный лейкоцидин — токсин, отличающийся от гемолизинов по антигенным свойствам, избирательно действует на лейкоциты, разрушая их;

г) экзотоксин, вызывающий синдром токсического шока (СТШ). Он обладает свойствами суперантигена. Для СТШ характерны повышение температуры, снижение артериального давления, кожные высыпания с последующим шелушением на кистях и стопах, лимфоцитопения, иногда диарея, поражение почек и др.

Сильные аллергизирующие свойства. Аллергены способны вызывать реакции гиперчувствительности как замедленного типа (ГЧЗ), так и немедленного типа (ГЧН).

Перекрестно реагирующие антигены (с изоантигенами эритроцитов А и В, почек и кожи — индукция аутоантител, развитие аутоиммунных заболеваний).

Факторы, угнетающие фагоцитоз. Фагоцитоз угнетают капсула, белок А, пептидогликан, тейхоевые кислоты, токсины.

Митогенное действие стафилококков в отношении лимфоцитов (этим действием обладают белок А, энтеротоксины и другие продукты, секретируемые стафилококками).

Энтеротоксины А, В, С1, С2, СЗ, D, Е. Они характеризуются антигенной специфичностью, термостабильностью, устойчивостью к действию формалина (не превращаются в анатоксины) и пищеварительных ферментов (трипсина и пепсина), устойчивы в диапазоне рН от 4,5 до 10,0.

Классификация. Род Staphylococcus включает в себя более 20 видов, которые подразделяются на две группы — коагулазоположительные и коагулазоотрицательные стафилококки. Для дифференциации видов используют различные признаки.

Патогенными для человека являются, главным образом, коагулазоположительные стафилококки, но многие коагулазоотрицательные также способны вызывать заболевания, S. aureus в зависимости от того, кто является его основным носителем, разделяется на 10 эковаров (hominis, bovis, jvis И др.).

Штаммы S. aureus различаются по чувствительности к стафилококковым фагам. Для типирования S. aureus используют международный набор из 23 умеренных фагов, которые разделены на четыре группы.

Отношение стафилококков к фагам своеобразное: один и тот же штамм может лизироваться либо одним фагом, либо одновременно несколькими. Но поскольку чувствительность их к фагам является признаком относительно стабильным, фаготипирование стафилококков имеет важное эпидемиологическое значение. Недостаток этого метода состоит в том, что типированию поддается не более 65—70 % S. aureus. В последние годы получены наборы специфических фагов и для типирования S. epidermidis.


 

А также другие работы, которые могут Вас заинтересовать

23118. Гамільтонова форма рівнянь 90.5 KB
  Гамільтонова форма рівнянь. Підставляючи отримане в початкове рня маємо: Для переходу до змінних і додаємо і віднімаємо: Звідси Оскільки права частина виражена через диференціали то її можна розглядати як повний диференціал певної функції що залежить від яку позначимо і назвемо функцією Гамільтона: де Залишилося довести що Маємо Враховуючи це запишемо: звідки Ця система рівнянь називається канонічними рівняннями Гамільтона. рівн. рівн.
23119. Закони руху системи матеріальних точок та твердого тіла. Тензор інерції 77 KB
  Закони руху системи матеріальних точок та твердого тіла. Запишемо другий закон Ньютона для матеріальної точки з даної системи: 1 де сумарна зовнішня сила що діє на іту м. Записавши 1 для кожної точки системи та просумувавши всі отриманні рівняння маємо: 2. З урахуванням третього закону Ньютона тобто співвідношення перепишемо 2 як: 3 Нехай Rрадіус вектор даної системи: задає точкуцентр мас системи.
23120. Закони збереження та фундаментальні властивості простору-часу 263 KB
  Рух механічної системи описується 2S величинами де Sкількість ступенів вільності. системи вибір початку відліку часу одна з сталих в диф. рівняннях що описують динаміку може бути обрана сталою 1 При розвязанні системи 1 2S1 сталих де Отримані величини інтеграли руху визнач. системи явно не залеж.
23121. Рух тіл в інерціальній та неінерціальній системах відліку. Сили інерції. Коріолісівське прискорення 202 KB
  Коріолісівське прискорення. інваріантне 0 де прискорення в ІСВ швидкість в ІСВ маса тіла рівнодійна сил взаємодії які діють на тіло. Характеризуватимемо рух початку координат НеІСВ відносно ІСВ радіусвектором а обертання НеІСВ відносно ІСВ кутовою частотою х В НеІСВ вимагають аналогічного до 0 запису закону руху тіла відносно радіусвектора : Оскільки прискорення в НеІСВ внаслідок х нерівне та величина не змінюється при переході до НеІСВ необхідно щоб сумарна сила складалась не тільки з теж...
23122. Закони руху системи матеріальних точок та твердого тіла. Тензор інерції 159.5 KB
  Закони руху системи матеріальних точок та твердого тіла.Введемо вектор повної кількості руху систем частинок: Знайдемо його зміну з часом: Для першої суми: ТобтоТаким чином якщо сума всіх зовнішніх сил рівна нулю то має місце закон збереження імпульсу. Ведемо повний момент кількості руху:Знайдемо швидкість його зміни в часі: Другий доданок повний момент зовнішніх сил .Розглянемо перший доданок врахувавши : За умов виконання має місце закон збереження моменту кількості руху.
23123. Хвилі у пружньому середовищі. Хвильове рівняння. Звукові хвилі 59.5 KB
  Хвилі у пружньому середовищі. Звукові хвилі. Розрізняють хвилі повздовжні і поперечні в залежності від того чи рухаються частинки біля своїх положень рівноваги вздовж чи поперек напрямку розповсюдження хвилі. Розглянемо хвилі типу Позн.
23124. Рух ідеальної рідини. Рівняння Бернуллі 55.5 KB
  Нагадаємо що поле швидкостей характеризує не швидкiсть окремих частинок середовища а швидкiсть у данiй точцi в даний момент часу будьякої частинки рiдини або газу що знаходиться в цiй точцi в цей момент часу. Надалi будемо розглядати такi рiдини або гази для яких тензор пружних напругє iзотропним: pij = −pδij 14.10 для вязкої рiдини газу набуде вигляду: Це є рiвняння НавєСтокса де η коефiцiєнт зсувної вязкостi коефiцiєнт обємної вязкостi. Для повного опису руху рiдини необхiдно додати ще рiвняння неперервностi та...
23125. Число Рейнольдса. Рух в’язкої рідини 44 KB
  В’язкою рідиною називають середовище в якому нарівні з нормальними напругами відмінні від нуля і дотичні напруги, що виникають внаслідок сил тертя. Коли швидкості не дуже великі, в’язка частина тензора напруг матиме такий вигляд...
23126. Основні закони термодинаміки. Формулювання другого закону термодинаміки через ентропію. Статистичне означення ентропії 88.5 KB
  Функція що звязує тиск обєм і температуру фізично однорідної системи яка перебуває в термодинамічній рівновазі називається рівнянням стану. Другий закон ТД для нерівноважних процесів: Для адіабатичного процесу ентропія системи зростає. При маємо: тобто Третій закон ТД: по мірі наближення Т до 0 К ентропія будь якої рівноважної системи перестає залежати від будьяких ТД параметрів системи.