93741

Активаторы и игибиторы ферментов

Доклад

Биология и генетика

Скорость ферментативной реакции и активность фермента определяется присутствием в среде активаторов и ингибиторов: первые повышают скорость реакции а вторые тормозят эту реакцию. Так соляная кислота активирует действие пепсина желудочного сока; желчные кислоты повышают активность панкреатической липазы...

Русский

2015-09-04

17.72 KB

1 чел.

Активаторы и игибиторы ферментов. Скорость ферментативной реакции и активность фермента определяется присутствием в среде активаторов и ингибиторов: первые повышают скорость реакции, а вторые тормозят эту реакцию. Так, соляная кислота активирует действие пепсина желудочного сока; желчные кислоты повышают активность панкреатической липазы; некоторые тканевые ферменты (оксидоредуктазы, катепсины, аргиназа), растительная протеиназа и др. в значительной степени активируются соединениями, содержащими свободные SH-группы (глутатион, цистеин), а ряд ферментов – также витамином С. Особенно часто активаторами выступают ионы двухвалентных и, реже, одновалентных металлов. Около четверти всех известных ферментов для проявления полной каталитической активности нуждаются в присутствии металлов. Многие ферменты вообще не активны в отсутствие металлов. Так, при удалении цинка угольная ангидраза (карбоангидраза), катализиру-ющая биосинтез и распад Н2СО3, практически теряет свою ферментативную активность; более того, цинк при этом не может быть заменен никаким другим металлом. Известны ферменты, действие которых активируется ионами нескольких металлов; в частности, енолаза активируется Mg2+, Mn2+, К+. На активность фермента влияет концентрация субстрата. При увеличении последней активность фермента возрастает, но до определенного предела. Концентрация субстрата, при которой активность фермента равна 0,5 от максимальной, называется константой Михаэлиса. На активность фермента влияет концентрация продукта реакции. При постепенном накоплении последнего в среде она снижается. Поэтому активность фермента определяют на начальном этапе реакции, когда субстрат еще не накопился. Активность ферментов зависит от рН среды. В зависимости от рН изменяется диссоциация ионогенных групп в активном центре фермента и в молекуле субстрата, что влияет на скорость реакции. Большинство ферментов наиболее активны в слабощелочной среде. Исключение – пепсин желудочного сока и катепсины лизосом, активные в кислой среде. На активность фермента влияет температура среды. Обычно при повышении ее на 10оС скорость реакции увеличивается в 2 раза (правило Ван Гоффа). Наиболее активны ферменты млекопитающих при 40-50 о. При более низкой температуре активность тормозится из-за снижения диссоциации ионогенных групп, а при более высокой – из-за денатурации белковой молекулы.

Ингибиторы по характеру торможения активности фермента могут быть обратимыми и необратимыми. В первом случае комплекс фермент-ингибитор может расщепляться и активность фермента восстанавливается. При необратимом ингибировании образуется прочная связь между ферментом и ингибитором. По механизму действия ингибиторы делят на конкурентные, неконкурентные, субстрат-ные и аллостерические. При конкурентном ингибировании структура ингибитора близка к структуре субстрата и он конкурирует за активный центр. Например, малоновая кислота по структуре близка к янтарной кислоте и поэтому способна связывать активный центр сукцинатде-гидрогеназы. Ингибирование можно осла-бить увеличением концентрации субстрата. На конкурентном ингибировании основано действие сульфаниламидов. Они по строению сходны с п-аминобензойной кислотой, необходимой микроорганизмам. Сульфаниламиды, занимая место послед-ней, тормозят рост микроорганизмов. Неконкурентное ингибирование развивается под действием вещества, структура которого не сходная со структурой субстрата. Оно связывается не с активным центром, а с другими участками молекулы фермента. Последний после этого может образовывать комплекс с субстратом, но внутри этого комплекса реакция не протекает. Например, ионы тяжелых металлов связывают HS-группы ферментов, ингибируя их. Цианиды связываются с ионом железа цитохромоксидазы, прекращая дыхание митохондрий. Неконкурентное ингибирование, в отличие от конкурентного, не снимается избытком субстрата. в. Субстратное ингибирование развивается иногда при увеличении в среде концентрации субстрата. Его снимают, уменьшая концентрацию последнего. г. Аллостерическое ингибирование развива-ется тогда, когда вещество, сзязываясь с аллостерическим центром, изменяет конфигурацию активного центра, блокируя его. Такими ингибиторами могут быть собственный продукт реакции, продукты других реакций, гормоны и другие вещества.


 

А также другие работы, которые могут Вас заинтересовать

13296. Формирование группового цифрового сигнала 45.85 KB
  Формирование группового цифрового сигнала передача телефонных сигналов по каналам ЦСП с ВРК осуществляется при использовании импульснокодовой модуляции ИКМ. В этом случае формирование группового цифрового сигнала предусматривает последовательное выполнение сле
13297. Линейный тракт аппаратуры ИКМ-30 10 KB
  Линейный тракт аппаратуры ИКМ30 включает в себя обслуживаемые оконечные и промежуточные станции соединенные кабельными линиями с включенными необслуживаемыми регенерационными пунктами НРП. Регенерация цифрового сигнала после прохождения каждого участка кабельно
13298. Искажение сигнала в линии 6.93 KB
  Искажение сигнала в линии На вход Регенераторарегенератор импульсов поступает искаженный помехами линейный сигнал. Основными видами помех в линейном тракте являются: межсимвольные помехи первогопервого и второговторого рода; переходные помехи от других с
13299. Межсимвольные помехи. Интегральный шум 4.81 KB
  Межсимвольные помехи. Интегральный шум Основной причиной появления межсимвольных помех являются искажения цифрового сигнала в кабельной линии возникающие за счет увеличения ее затухания с ростом частоты и нелинейности фазочастотной характеристики . Импульс после ...
13300. Переходные помехи 4.48 KB
  Переходные помехи Наличие переходных влияний между парами кабеля приводит к появлению переходных помех в каждой паре кабеля от систем передачи работающих по другим парам. Для подавления межсимвольной помехи возникшей за счет неравномерности частотной характерист
13301. Линейный корректор 36.29 KB
  Линейный корректор Ослабленный и искаженный в процессе прохождения по кабельной линии цифровой сигнал через симметрирующий трансформатор Тр1 поступает на вход линейного корректора ЛК осуществляющего коррекцию формы принимаемых импульсов и их усиление. Амплитудноча...
13302. Обобщенная схема регенератора импульсов 4.86 KB
  Обобщенная схема регенератора импульсов Целью работы является создание программы позволяющей наглядно проиллюстрировать работу Регенератора импульсоварегенератор. Требуется показать вид сигнала в его основных точках. Выберем обобщенную схему регенератора импульсо...
13303. ЖИЛИЩНО-КОММУНАЛЬНОЕ ХОЗЯЙСТВО 1.99 MB
  Жилищный фонд включает недвижимое имущество с установленными правами владения, пользования и распоряжения в границах имущества: земельные участки и прочно связанные с ними жилые дома с жилыми и нежилыми помещениями, хозяйственные приусадебные постройки, зеленые насаждения с многолетним циклом развития
13304. Siemens. Каскадне регулювання Ручна установка параметрів регулювання без знання характеристики обладнання 681 KB
  Siemens. Каскадне регулювання Ручна установка параметрів регулювання без знання характеристики обладнання Параметри регулювання для оптимального регулювання устаткування в цьому випадку ще невідомі. Для утримання регулюючого контура в стабільному стані є наступні з...