93805

Биохимия печени

Доклад

Биология и генетика

Основная роль печени в углеводном обмене заключается в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией между синтезом и распадом гликогена депонируемого в печени. В печени синтез гликогена и его регуляция в основном аналогичны тем процессам которые протекают в других органах и тканях в частности в мышечной ткани.

Русский

2015-09-06

18.63 KB

0 чел.

Биохимия печени. Основная роль печени в углеводном обмене заключается в обеспечении постоянства концентрации глюкозы в крови. Это достигается регуляцией между синтезом и распадом гликогена, депонируемого в печени. В печени синтез гликогена и его регуляция в основном аналогичны тем процессам, которые протекают в других органах и тканях, в частности в мышечной ткани. Синтез гликогена из глюкозы обеспечивает в норме временный резерв углеводов, необходимый для поддержания концентрации глюкозы в крови в тех случаях, если ее содержание значительно уменьшается (например, у человека это происходит при недостаточном поступлении углеводов с пищей или в период ночного «голодания»). Необходимо подчеркнуть важную роль фермента глюкокиназы в процессе утилизации глюкозы печенью. Глюкокиназа, подобно гексокиназе, катализирует фосфорилирование глюкозы с образованием глюкозо-6-фосфата, при этом активность глюкокиназы в печени почти в 10 раз превышает активность гексокиназы. Важное различие между этими двумя ферментами заключается в том, что глюкокиназа в противоположность гексокиназе имеет высокое значение КМ для глюкозы и не ингибируется глюкозо-6-фосфатом. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и автоматически увели чивает поглощение глюкозы печенью (образовавшийся глюкозо-6-фосфат либо затрачивается на синтез гликогена, либо расщепляется). Синтезированные в печени триглицериды в норме выделяются в кровь в составе липопротеинов и транспортируются в жировую ткань для более «постоянного» хранения. В реакциях пентозофосфатного пути в печени образуется НАДФН, используемый для восстановительных реакций в процессах синтеза жирных кислот, холестерина и других стероидов. Кроме того, при этом образуются пентозофосфаты, необходимые для синтеза нуклеиновых кислот. Наряду с утилизацией глюкозы в печени происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени происходит в основном фосфоролитическим путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов. Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза. Ферментные системы печени способны катализировать все реакции или значительное большинство реакций метаболизма липидов. Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Все альбумины * плазмы, 75–90% α-глобулинов и 50% β-глобулинов синтезируются гепатоцитами. Лишь γ-глобулины продуцируются не гепатоцитами, а системой макрофагов, к которой относятся звездчатые ретикулоэндотелиоциты (клетки Купфера). В основном γ-глобулины образуются в печени. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин. печени окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты. Наряду с микросомальным в печени существует также пероксисомальное окисление. В печени широко представлены также «защитные» синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак. В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофона – скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой. Обезвреживание фенола, крезола, скатола и индола в печени происходит в результате взаимодействия этих соединений не со свободными серной и глюкуроновой кислотами, а с их так называемыми активными формами: ФАФС и УДФГК. начальным этапом распада гемоглобина является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от молекулы вердоглобина отщепляются атом железа и белок глобин. В результате образуется биливердин, который представляет собой цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем биливердин, восстанавливаясь, превращается в билирубин – пигмент, выделяемый с желчью и поэтому называемый желчным пигментом. Он нерастворим в воде, дает непрямую реакцию с диазореактивом, т.е. реакция протекает только после предварительной обработки спиртом. В печени билирубин соединяется (конъюгирует) с глюкуроновой кислотой. Эта реакция катализируется ферментом УДФ-глюкуронилтрансферазой, при этом глюкуроновая кислота вступает в реакцию в активной форме, т.е. в виде УДФГК. Образующийся глюкуронид билирубина по-лучил название прямого билирубина (конъюгированный билирубин). Он растворим в воде и дает прямую реакцию с диазореактивом. Большая часть билирубина соединяется с двумя молекулами глюкуроновой кислоты, образуя диглюкуронид билирубина. Образовав-шийся в печени прямой билирубин вместе с очень небольшой частью непрямого билирубина выводится с желчью в тонкую кишку. Здесь от прямого билирубина отщепляется глюкуроновая кислота и происходит его восстановление с последовательным образованием мезоби-лирубина и мезобилиногена (уробили-ногена). Принято считать, что около 10% билирубина восстанавливается до мезобилиногена на пути в тонкую кишку, т.е. во внепеченочных желчных путях и в желчном пузыре. Из тонкой кишки часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в воротную вену и током крови переносится в печень, где расщепляется полностью до ди- и трипирролов. Образовавшийся стеркобили-ноген в нижних отделах толстой кишки (в основном в прямой кишке) окисляется до стеркобилина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в систему нижней полой вены (попадает сначала в геморроидальные вены) и в дальнейшем выводится с мочой.


 

А также другие работы, которые могут Вас заинтересовать

76754. Развитие черепа в онтогенезе 191.91 KB
  Кости лицевого черепа развиваются на основе висцеральных дуг которых закладывается 5 пар а между ними – 5 пар висцеральных карманов старое название жаберные дуги и жаберные карманы. Висцеральные дуги для лицевого черепа. Ядра точки окостенения подразделяются на: первичные 4150 появляющиеся во внутриутробном периоде в костях мозгового черепа их больше всего начало появления 78 недели к рождению они образуют 20 крупных очагов оссификации; вторичные появляющиеся после рождения; в больших костях черепа их мало но между костями в...
76755. Варианты и аномалии костей черепа 181.64 KB
  Теменные кости выраженность теменных бугров особенно у женщин; появление межтеменной кости. Затылочная кость наличие поперечного шва отделяющего верхнюю часть чешуи и образование вставочной дополнительной кости; присутствие более мелких добавочных костей часто расположенных в швах кости швов; значительная выраженность затылочных выступов; уплощение чешуи слабая выраженность борозд или наоборот увеличение изогнутости чешуи и углубление борозд; разнообразные формы большого отверстия костных валиков вокруг внутреннего его края;...
76756. Первая и вторая висцеральные дуги 187.99 KB
  Развитие лицевого (висцерального) черепа определяется мозгом и краниальным (глоточным) отделом первичной кишки, в котором на боковых стенках между висцеральными (жаберными) карманами появляются хрящевые висцеральные (жаберные) дуги, но особое значение для черепа имеют первые две.
76757. Кости лицевого черепа. Глазница 192.12 KB
  Подвисочная поверхность находится сзади тела образуя стенку подвисочной и крылонебной ямок состоит: из бугра верхней челюсти с задними альвеолярными отверстиями для одноименных нервов и сосудов. Глазничная поверхность занимает на теле кости верхнее положение участвуя в образовании нижней стенки глазницы. Носовая поверхность образует латеральную стенку полости носа. Небный отросток носовой гребень по медиальному краю; передняя носовая ость: окончание носового гребня впереди; верхняя носовая поверхность; нижняя небная поверхность...
76758. Височная кость 184.9 KB
  У верхушки пирамиды внутреннее отверстие сонного канала. На передней поверхности пирамиды находятся: каменисточешуйчатая щель хрящевая ростковая зона и отверстие мышечнотрубного канала; дугообразное возвышение от полукружных костных каналов лабиринта; крыша барабанной полости от среднего уха; тройничное вдавление на вершине пирамиды для одноименного нервного узла; расщелины и борозды большого и малого каменистого нервов. На задней поверхности пирамиды располагаются: внутреннее слуховое отверстие и внутренний слуховой проход для YII...
76759. Клиновидная кость 180.73 KB
  Клиновидная кость – воздухоносная состоит из тела малых и больших крыльев и крыловидных отростков. На верхней поверхности тела находится турецкое седло а в нем: гипофизарная ямка для гипофиза центральной нейроэндокринной железы; бугорок седла кпереди от ямки; спинка седла с задними наклоненными отростками кзади от ямки; сонные борозды: правая и левая с клиновидными язычками лежат по боковым поверхностям седла предназначены для внутренней сонной артерии и внутреннего сонного симпатического нерва венозного пещеристого синуса. На...
76760. Крылонёбная ямка 181.89 KB
  Ямка соседствует и имеет связи с височной и подвисочной ямами. По форме ямка узкая щель ограниченная тремя выше перечисленными костями она граничит и сообщается с полостью черепа средней черепной ямой полостями носа и рта глазницей височной и подвисочной ямами. Крылонебная ямка сообщается: с полостью рта через большой и малый небные каналы с одноименными сосудами и нервами которые снабжают твердое и мягкое небо и небные миндалины; с полостью носа через клиновиднонебное отверстие с одноименными сосудами и нервами для слизистой...
76761. Полость носа 181.99 KB
  Полость носа обладает верхней нижней и парными боковыми стенками. Верхняя стенка состоит из: носовой части лобной кости продырявленной пластинки решетчатой кости и тела клиновидной которые составляют верхнезаднюю часть стенки; парных носовых костей: право и левой образующих передневерхнюю часть стенки. Нижняя стенка включает: небные отростки верхних челюстей и горизонтальные пластинки небных костей – костное небо; носовой гребень который проходит по середине стенки в продольном направлении. Латеральные стенки правая и левая...
76762. Внутреннее основание черепа 184.16 KB
  Внутренняя граница между сводом и основанием выделяется не во всех учебниках: слепое отверстие лобной кости и основание ее глазничных отростков; соединение малых и больших крыльев клиновидной кости латеральная оконечность верхней глазничной щели стык теменноклиновидного и лобнотеменного швов; основание пирамиды височной кости и сосцевиднотеменной шов; борозда поперечного синуса крестообразное возвышение и внутренний выступ затылочной кости. Передняя черепная яма образована: по бокам глазничными частями лобной кости; в центре ...