94202

Способи нейтралізації шкідливих речовин відпрацьованих газів ДВЗ

Доклад

Экология и защита окружающей среды

Проте уникнути вмісту шкідливих речовин у відпрацьованих газах неможливо. Тому шкідливі компоненти відпрацьованих газів у випускній системі двигуна нейтралізують спеціальними пристроями - нейтралізаторами. Для нейтралізації необхідно забезпечити перебіг як окисних реакцій - для окислення продуктів неповного згоряння палива...

Украинкский

2015-09-10

89.13 KB

1 чел.

Назвіть і коротко охарактеризуйте способи нейтралізації шкідливих речовин відпрацьованих газів ДВЗ.

 Зменшення шкідливих викидів автомобілів їх нейтралізацією та уловлюванням

Зменшення вмісту шкідливих речовин у відпрацьованих газах оптимізацією процесу згоряння - найперспективніший захід, тому що продуктів неповного згоряння СО і СтНп легше позбутися на стадії їх утворення.

Проте уникнути вмісту шкідливих речовин у відпрацьованих газах неможливо. Тому шкідливі компоненти відпрацьованих газів у випускній системі двигуна нейтралізують спеціальними пристроями - нейтралізаторами.

Для нейтралізації необхідно забезпечити перебіг як окисних реакцій -для окислення продуктів неповного згоряння палива СО і СтНп до продуктів повного згоряння СО і Н20, так і відновних реакцій -для розкладання оксидів азоту NОх у вихідні речовини 02 і N2.

Для очищення відпрацьованих газів дизеля від сажі застосовують спеціальні пристрої-уловлювачі.

Каталітична нейтралізація відпрацьованих газів

Для прискорення перебігу окисних і відновних реакцій в нейтралізаторах застосовують різні каталізатори (прискорювачі реакцій). Залежно від здатності активізувати ті або інші реакції каталізатори поділяють на: окисні, які прискорюють перебіг реакції окислення оксиду вуглецю і вуглеводнів; відновні - для відновлення оксидів азоту; двофункціональні, які одночасно активізують окисні та відновні реакції.

Широкого поширення у практиці очищення автомобільних відпрацьованих газів (ВГ) набули каталізатори на основі благородних металів - паладію (Р/) і платини (Рг). Вони мають хорошу селективність, низькі температури початку ефективної роботи, досить довговічні. Платина - універсальний каталізатор. Але каталізаторами, в реакціях відновлення АЮх, можуть виступати також родій (Ро) і рутеній (Ри). Широкого поширення ці нейтралізатори не набувають через їх високу вартість. В окисних і відновних реакціях мож на застосовувати відносно дешеві каталізатори на основі міді, марганцю, нікелю, хрому і т. д. (СиО, МпОг ЛЮ, Сг202, Рв2Ог ІпО). Але ці каталізатори недовговічні, і їх ефективність значно менша за платино-паладієві. Тому, незважаючи на високу вартість, частіше застосовують каталізатори на основні благородних металів.

Будова каталізаторів така: активний каталітичний прошарок нанесено на інертне тіло-носій. Найпоширенішими є гранульовані і блочні (монолітні) носії.

Гранульовані носії виготовляють з оксиду алюмінію чи алюмосилікатів. Гранули діаметром 2-5 мм мають розвинену, крупно-порувату поверхню - 50-100 м2/г.

У двигунах із звичайною системою живлення один і той самий каталітичний нейтралізатор може виконувати роль прискорювача окисних чи відновних реакцій. Через те, що в одному нейтралізаторі важко досягти ефективного очищення відпрацьованих газів від найпоширеніших трьох шкідливих речовин (СО, СтНп і ЛЮХ), як правило, застосовують подвійну систему очищення. В першу чергу, це стосується бензинових двигунів, які живляться збагаченими сумішами. В системі подвійного очищення є два нейтралізатори, розташовані в одному блоці.

В першому нейтралізаторі відбувається відновлення NОх до N2 в результаті реакцій

У другому нейтралізаторі для створення окисного середовища, тобто для окислення СО і СтНп додатковим патрубком підводять повітря. На окисному каталізаторі нейтралізуються продукти неповного згоряння:

У каталітичних нейтралізаторах окислення оксиду вуглецю в С02 відбувається при температурі 250-300 °С, вуглеводнів, бенз(а)пірена, альдегідів - при температурі 400-450 °С. При температурі понад 580 °С вигорає сажа.

На рис. 6.1 показана конструктивна схема гранульованого каталітичного нейтралізатора.

Відпрацьовані гази патрубком 2 надходять у верхню частину нейтралізатора 3, де при нестачі кисню відбуваються реакції відновлювання NOх до N2.

Далі відпрацьовані гази надходять у нижню частину нейтралізатора 5, де відбуваються реакції окислення СО і СтНп з подавання патрубком 1 додаткового повітря.

Хороших результатів досягають застосуванням подвійних нейтралізаторів у разі регулювання двигунів на стехіометричні чи дещо збагачені суміші.

Випробування автомобіля, оснащеного каталітичного нейтралізатора за їздовим циклом довели зменшення концентрації СО і С Н на 40 %, NO - на 75 %.

Широке застосування каталітичних нейтралізаторів у нашій країні гальмується їх високою вартістю, недовговічністю, а також використанням етилованих бензинів. Окрім того, застосування каталітичних нейтралізаторів дещо зменшує потужність і погіршує паливну економічність двигуна.

Подавання додаткового повітря у випускний трубопровід

Для бензинових двигунів навіть у разі живлення збідненими сумішами (а= 1,05-1,1) характерна низька концентрація вільного кисню у відпрацьованих газах, а у разі збагачених сумішей (з коефіцієнтом надміру повітря а< 1) вільн.ий кисень майже відсутній. Саме коли а < 1, утворюються продукти неповного згоряння палива СО і СН.

Для їх нейтралізації необхідно у впускну трубу подати додаткову кількість повітря з таким розрахунком, щоб сумарний коефіцієнт надміру повітря (з урахуванням повітря, яке подають у циліндри двигуна) був не меншим за а = 1,05.

В результаті, за високої температури (700 °С) відбувається реакція окиснення. Такі системи практично не впливають на вміст оксидів азоту у відпрацьованих газах.

Найпоширенішим типом пристроїв, які забезпечують подавання повітря, є нагнітач ротаційного типу з приведенням від колінчастого вала. В автомобілі ГАЗ-24 з карбюратором, який виконано з граничним відхиленням у сторону збагачення суміші, подача нагнітача, що дорівнює 60 м3, забезпечує умови для очищення ВГ від оксидів вуглецю на 90-95 %, від вуглеводнів - на 70-85 %.

Простішим пристроєм, який з достатньою для практичних цілей точністю дозує подавання додаткового повітря на усіх режимах роботи двигуна, є ежектор (рис. 6.6).

Ежектор складається із сопла 1, змішувальної камери 2, дифузора 3. Недолік ежектора - підвищений газодинамічний опір при максимальних витратах ВГ і викиданні ВГ патрубком впуску додаткового повітря в режимах холостого ходу, який можна усунути вста-новлюванням у цьому патрубку ма-лоінерційного зворотного клапана типу пульсара.

Рис. 6.6. Схема ежектора

Термічна нейтралізація

При термічній нейтралізації продуктів неповного згоряння палива СО і СтНп, які містяться у ВГ двигунів, відбувається їх окислення до кінцевих продуктів С02 і Н20 у випускній системі. Цей про цес інтенсифікує створення в системі випуску умов, сприятливих для окислення, тобто підвищення температури і збільшення часу реакції та подавання в зону окислення додаткового повітря.

Термічний нейтралізатор - це теплоізольований об'єм зі спеціальною організацією перетікання ВГ, який вставляють у випускну систему двигуна, що здійснює термічне доокислення токсичних компонентів завдяки теплоті ВГ (рис. 6.7). Термічна нейтралізація не залежить від виду палива, яке спалюють, наявності присадок і дозволяє застосовувати у двигунах етилований бензин. Підвищити температуру ВГ у нейтралізаторі можна, зменшуючи теплові втрати застосуванням екранів, теплоізоляцією корпусу нейтралізатора, використанням теплоти реакції окислення. Для двигунів, які живляться збагаченими сумішами, додаткове повітря перед подаванням у реакційну камеру нейтралізатора рекомендують підігрівати від гарячих стінок системи випуску ВГ.

Концентрація оксидів азоту у ВГ у разі застосування термічних нейтралізаторів може дещо зростати в окремих режимах роботи двигуна чи залишатися незмінною

Трубами (які на схемі не показані) у випускні патрубки головки циліндрів подають додаткове повітря.

У внутрішню камеру реактора патрубками 5 надходить суміш теріалу, і складається вона із двох частин - 2 і 4. В середині камери є перегородка 6, яка сприяє кращому перемішуванню повітря з відпрацьованими газами. Камера ізольована прошарком азбесту і вставлена в металічний корпус 1 і 3. Відпрацьовані гази після камери термічного реактора спрямовують у глушник крізь вікно 7.

В дизелях окислення продуктів неповного згоряння, як правило, здійснюється під час перепускання відпрацьованих газів крізь допалювачі, в яких підтримують постійне горіння.

Застосування полум'яних допалювачів, як і усієї термічної нейтралізації, є причиною деякого зменшення потужності та підвищення питомої витрати палива двигунами через зростання протитиску в системі випуску, а також призводить до порушення їх акустичної настройки.

Рідинні нейтралізатори відпрацьованих газів

Рідинні нейтралізатори - найпростіші пристрої, в яких здійснюється фізико-хімічна обробка відпрацьованих газів під час перепускання їх крізь шар води чи хімічного розчину.

Принцип роботи рідинних нейтралізаторів ґрунтується на розчиненні чи хімічному зв'язуванні шкідливих речовин, уловлюванні дрібнодисперсних частинок і фільтрації відпрацьованих газів.

Компоненти ВГ, які розчиняються у воді, - альдегіди, оксиди сірки, вищі оксиди азоту - нейтралізуються, сажа й інші дисперсні частинки уловлюються рідиною, послаблюється інтенсивність запаху ВГ, оксид вуглецю й оксид азоту не знезаражуються.

В рідинних нейтралізаторах ВГ охолоджуються до температури 40-80 °С, що важливо, якщо роботи проводяться у вибухонебезпечних середовищах. Окрім того, за таких температур бенз(а)пірен переходить у твердий стан і вловлюється.

Щоб підвищити ефективність нейтралізації, застосовують розчини хімічних реактивів. Найефективніші водяні розчини сульфату натрію Na2S03, соди Na2С03 з додаванням гідрохінону C5H802 з метою запобігання передчасному окисленню основних хімреагентів. Складні розчини застосовувати непрактично через швидкоплинність процесу очищення, великої витрати розчину під час роботи в режимах максимальних навантажень. У багатьох випадках застосовують технічну воду, забезпечуючи її часту заміну в нейтралізаторі.

Відпрацьовані гази з випускної труби 1 надходять у колектор 8 і крізь отвори в ньому виходять у ємність з нейтралізуючою рідиною, в якій відбувається очищення газу від токсичних компонентів. Після того як гази проходять фільтруючий прошарок 6 і сепаратор 5, де затримується волога, яку гази захопили при проходженні нейтралізуючого розчину, вони надходять у атмосферу Розчин у робочий бак 7 добавляють з додаткового баку 3.

Недоліком рідинних нейтралізаторів є те, що розчин може замерзати. Крім того, експлуатація рідинного нейтралізатора дорожча через більшу трудомісткість технічного обслуговування, яке потребує щозмінного видалення й утилізації спрацьованої рідини і шламу, промивання системи і заповнювання свіжою рідиною. Рідинні нейтралізатори мають велику масу і габаритні розміри, високу вартість хімічних реактивів.


 

А также другие работы, которые могут Вас заинтересовать

60182. Японія – далека і близька. Інтегрований позакласний захід 98.5 KB
  Давня назва Японії Ніппон що означає джерело Сонця. Звязок Японії з іншими країнами світу здійснюється морським шляхом. Державний герб Японії і особиста емблема імператора жовта хризантема...
60186. Стройові прийоми і рух без зброї 131 KB
  Строї та їх елементи стройове положення повороти на місці рух стройовим і похідним кроком вихід зі строю підхід до начальника повернення до строю. вихід зі строю підхід до начальника повернення до строю.
60187. Постороение выкроек головных уборов 29.5 KB
  Форма козырька его длина будут зависеть только от Вашей фантазии И наконец построение круглой шляпки но состоящей не из клиньев а как бы из двух полукруглых бочков и средней части имеющей прямоугольную форму.